Search results
Results From The WOW.Com Content Network
The trigonometric functions of angles that are multiples of 15°, 18°, or 22.5° have simple algebraic values. These values are listed in the following table for angles from 0° to 45°. [ 1 ] In the table below, the label "Undefined" represents a ratio 1 : 0. {\displaystyle 1:0.}
Even today sine tables are given as decimals to a certain precision. If sin(15°) is given as 0.1736, it means the rational 1736 ÷ 10000 is a good approximation of the actual infinite precision number. The only difference is that in the earlier days they had not standardized on decimal values (or powers of ten as denominator) for fractions.
Decimal Exact Decimal 0° 0 0 g: 0 0 ... [15] The derivative of sine is cosine, ... Similarly, Python defines math.sin(x) and math.cos(x) within the built-in math module.
The red section on the right, d, is the difference between the lengths of the hypotenuse, H, and the adjacent side, A.As is shown, H and A are almost the same length, meaning cos θ is close to 1 and θ 2 / 2 helps trim the red away.
Using this standard notation, the argument x for the trigonometric functions satisfies the relationship x = (180x/ π)°, so that, for example, sin π = sin 180° when we take x = π. In this way, the degree symbol can be regarded as a mathematical constant such that 1° = π /180 ≈ 0.0175.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
These endeavors culminated in the eventual discovery of the power series expansions of the sine and cosine functions by Madhava of Sangamagrama (c. 1350 – c. 1425), the founder of the Kerala school of astronomy and mathematics, and the tabulation of a sine table by Madhava with values accurate to seven or eight decimal places.
The area of triangle OAD is AB/2, or sin(θ)/2. The area of triangle OCD is CD/2, or tan(θ)/2. Since triangle OAD lies completely inside the sector, which in turn lies completely inside triangle OCD, we have < < .