Search results
Results From The WOW.Com Content Network
The diagnostic odds ratio ranges from zero to infinity, although for useful tests it is greater than one, and higher diagnostic odds ratios are indicative of better test performance. [1] Diagnostic odds ratios less than one indicate that the test can be improved by simply inverting the outcome of the test – the test is in the wrong direction ...
Pre-test probability: For example, if about 2 out of every 5 patients with abdominal distension have ascites, then the pretest probability is 40%. Likelihood Ratio: An example "test" is that the physical exam finding of bulging flanks has a positive likelihood ratio of 2.0 for ascites.
Bowker's test of symmetry; Categorical distribution, general model; Chi-squared test; Cochran–Armitage test for trend; Cochran–Mantel–Haenszel statistics; Correspondence analysis; Cronbach's alpha; Diagnostic odds ratio; G-test; Generalized estimating equations; Generalized linear models; Krichevsky–Trofimov estimator; Kuder ...
In these cases, a posttest probability can be estimated more accurately by using a likelihood ratio for the test. Likelihood ratio is calculated from sensitivity and specificity of the test, and thereby it does not depend on prevalence in the reference group, [2] and, likewise, it does not change with changed pre-test probability, in contrast ...
This page was last edited on 11 January 2024, at 17:53 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.
This is primarily done for the column (condition) ratios, yielding likelihood ratios in diagnostic testing. Taking the ratio of one of these groups of ratios yields a final ratio, the diagnostic odds ratio (DOR). This can also be defined directly as (TP×TN)/(FP×FN) = (TP/FN)/(FP/TN); this has a useful interpretation – as an odds ratio ...
The sample odds ratio n 11 n 00 / n 10 n 01 is easy to calculate, and for moderate and large samples performs well as an estimator of the population odds ratio. When one or more of the cells in the contingency table can have a small value, the sample odds ratio can be biased and exhibit high variance .