Ad
related to: pert example problems with solution set
Search results
Results From The WOW.Com Content Network
It can be understood as representing the time, effort, and resources required to move from one event to another. A PERT activity cannot be performed until the predecessor event has occurred. PERT sub-activity: a PERT activity can be further decomposed into a set of sub-activities. For example, activity A1 can be decomposed into A1.1, A1.2 and A1.3.
In multi-objective optimization, the Pareto front (also called Pareto frontier or Pareto curve) is the set of all Pareto efficient solutions. [1] The concept is widely used in engineering . [ 2 ] : 111–148 It allows the designer to restrict attention to the set of efficient choices, and to make tradeoffs within this set, rather than ...
In probability and statistics, the PERT distributions are a family of continuous probability distributions defined by the minimum (a), most likely (b) and maximum (c) values that a variable can take. It is a transformation of the four-parameter beta distribution with an additional assumption that its expected value is
A citation is needed on the inventors, I found this citation, but I have no access to the article to confirm PERT as an Analytical Aid for Program Planning—Its Payoff and Problems J. W. Pocock Booz Allen Applied Research, Inc., Chicago, Illinois Wakelamp 06:13, 16 April 2010 (UTC)
Dominating set, a.k.a. domination number [3]: GT2 NP-complete special cases include the edge dominating set problem, i.e., the dominating set problem in line graphs. NP-complete variants include the connected dominating set problem and the maximum leaf spanning tree problem. [3]: ND2 Feedback vertex set [2] [3]: GT7
The NP-complete problems represent the hardest problems in NP. If some NP-complete problem has a polynomial time algorithm, all problems in NP do. The set of NP-complete problems is often denoted by NP-C or NPC. Although a solution to an NP-complete problem can be verified "quickly", there is no known way to find a solution quickly.
For example, if the feasible region is defined by the constraint set {x ≥ 0, y ≥ 0}, then the problem of maximizing x + y has no optimum since any candidate solution can be improved upon by increasing x or y; yet if the problem is to minimize x + y, then there is an optimum (specifically at (x, y) = (0, 0)).
In computational complexity theory, the set splitting problem is the following decision problem: given a family F of subsets of a finite set S, decide whether there exists a partition of S into two subsets S 1, S 2 such that all elements of F are split by this partition, i.e., none of the elements of F is completely in S 1 or S 2.