Search results
Results From The WOW.Com Content Network
The misuse of Statistics can trick the observer who does not understand them into believing something other than what the data shows or what is really 'true'. That is, a misuse of statistics occurs when an argument uses statistics to assert a falsehood. In some cases, the misuse may be accidental.
"Ecological fallacy" is a term that is sometimes used to describe the fallacy of division, which is not a statistical fallacy. The four common statistical ecological fallacies are: confusion between ecological correlations and individual correlations, confusion between group average and total average, Simpson's paradox, and confusion between ...
Selection bias is the bias introduced by the selection of individuals, groups, or data for analysis in such a way that proper randomization is not achieved, thereby failing to ensure that the sample obtained is representative of the population intended to be analyzed. [1]
There are both statistical (see stepwise regression) and substantive considerations that lead the authors to favor some of their models over others, and there is a liberal use of statistical tests. However, to discard one or more variables from an explanatory relation on the basis of the data means one cannot validly apply standard statistical ...
Escalation of commitment, irrational escalation, or sunk cost fallacy, where people justify increased investment in a decision, based on the cumulative prior investment, despite new evidence suggesting that the decision was probably wrong. G. I. Joe fallacy, the tendency to think that knowing about cognitive bias is enough to overcome it. [66]
In statistics, self-selection bias arises in any situation in which individuals select themselves into a group, causing a biased sample with nonprobability sampling.It is commonly used to describe situations where the characteristics of the people which cause them to select themselves in the group create abnormal or undesirable conditions in the group.
Goodhart's law is an adage often stated as, "When a measure becomes a target, it ceases to be a good measure". [1] It is named after British economist Charles Goodhart, who is credited with expressing the core idea of the adage in a 1975 article on monetary policy in the United Kingdom: [2]
As with any logical fallacy, identifying that the reasoning behind an argument is flawed does not necessarily imply that the resulting conclusion is false. Statistical methods have been proposed that use correlation as the basis for hypothesis tests for causality, including the Granger causality test and convergent cross mapping.