Search results
Results From The WOW.Com Content Network
Finding the roots (zeros) of a given polynomial has been a prominent mathematical problem.. Solving linear, quadratic, cubic and quartic equations in terms of radicals and elementary arithmetic operations on the coefficients can always be done, no matter whether the roots are rational or irrational, real or complex; there are formulas that yield the required solutions.
If the function maps real numbers to real numbers, then its zeros are the -coordinates of the points where its graph meets the x-axis. An alternative name for such a point ( x , 0 ) {\displaystyle (x,0)} in this context is an x {\displaystyle x} -intercept .
If a, b, and c are real numbers and the domain of f is the set of real numbers, then the roots of f are exactly the x-coordinates of the points where the graph touches the x-axis. If the discriminant is positive, the graph touches the x-axis at two points; if zero, the graph touches at one point; and if negative, the graph does not touch the x ...
If the three roots are real and distinct, the discriminant is a product of positive reals, that is > If only one root, say r 1, is real, then r 2 and r 3 are complex conjugates, which implies that r 2 – r 3 is a purely imaginary number, and thus that (r 2 – r 3) 2 is real and negative.
In spectral graph theory, an eigenvalue of a graph is defined as an eigenvalue of the graph's adjacency matrix, or (increasingly) of the graph's Laplacian matrix due to its discrete Laplace operator, which is either (sometimes called the combinatorial Laplacian) or / / (sometimes called the normalized Laplacian), where is a diagonal matrix with ...
where c 1 and c 2 are constants that can be non-real and which depend on the initial conditions. [6] (Indeed, since y(x) is real, c 1 − c 2 must be imaginary or zero and c 1 + c 2 must be real, in order for both terms after the last equals sign to be real.) For example, if c 1 = c 2 = 1 / 2 , then the particular solution y 1 (x) = e ax ...
The next two conjectures of Hardy and John Edensor Littlewood on the distance between real zeros of (+) and on the density of zeros of (+) on the interval (, +] for sufficiently large >, and = + and with as small as possible value of >, where > is an arbitrarily small number, open two new directions in the investigation of the Riemann zeta ...
The graph below shows an example of this, ... "Extensions of the Bloch-Pólya theorem on the number of distinct real zeros of polynomials" (PDF).