Search results
Results From The WOW.Com Content Network
The number 54 can be expressed as a product of two integers in several different ways: 54 × 1 = 27 × 2 = 18 × 3 = 9 × 6. {\displaystyle 54\times 1=27\times 2=18\times 3=9\times 6.} Thus the complete list of divisors of 54 is 1, 2, 3, 6, 9, 18, 27, 54.
An extravagant number has fewer digits than its prime factorization. The first in decimal: 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30 (sequence A046760 in the OEIS). An economical number has been defined as a frugal number, but also as a number that is either frugal or equidigital.
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
A number that has the same number of digits as the number of digits in its prime factorization, including exponents but excluding exponents equal to 1. A046758: Extravagant numbers: 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30, 33, 34, 36, 38, ... A number that has fewer digits than the number of digits in its prime factorization (including ...
180 is a 61-gonal number, [2] while 61 is the 18th prime number. Half a circle has 180 degrees, [7] and thus a U-turn is also referred to as a 180. Summing Euler's totient function φ(x) over the first + 24 integers gives 180. In binary it is a digitally balanced number, since its binary representation has the same number of zeros as ones ...
The number 1 (expressed as a fraction 1/1) is placed at the root of the tree, and the location of any other number a/b can be found by computing gcd(a,b) using the original form of the Euclidean algorithm, in which each step replaces the larger of the two given numbers by its difference with the smaller number (not its remainder), stopping when ...
Number Discovery date Decimal digits 1 ... 36 97139×2 18397548 − 1 23 April 2023 ... 180 27653×2 9167433 + 1 [37] 8 June 2005 2,759,677
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.