Search results
Results From The WOW.Com Content Network
The books cover plane and solid Euclidean geometry, elementary number theory, and incommensurable lines. Elements is the oldest extant large-scale deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science, and its logical rigor was not surpassed until the 19th century.
If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry.
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.
An axiomatic system is said to be independent if each of its axioms is independent. If a true statement is a logical consequence of an axiomatic system, then it will be a true statement in every model of that system. To prove that an axiom is independent of the remaining axioms of the system, it is sufficient to find two models of the remaining ...
In Euclidean geometry, Apollonius' problem is to construct all the circles that are tangent to three given circles. Special cases of Apollonius' problem are those in which at least one of the given circles is a point or line, i.e., is a circle of zero or infinite radius.
Euclid (/ ˈ j uː k l ɪ d /; Ancient Greek: Εὐκλείδης; fl. 300 BC) was an ancient Greek mathematician active as a geometer and logician. [2] Considered the "father of geometry", [3] he is chiefly known for the Elements treatise, which established the foundations of geometry that largely dominated the field until the early 19th century.
This statement was first conjectured in 1845 by Joseph Bertrand [18] (1822–1900). Bertrand himself verified his statement for all numbers in the interval [2, 3 × 10 6]. His conjecture was completely proved by Chebyshev (1821–1894) in 1852 [19] and so the postulate is also called the Bertrand–Chebyshev theorem or Chebyshev's theorem.
Euclidean division, the division which produces a quotient and a remainder; Euclidean algorithm, a method for finding greatest common divisors; Extended Euclidean algorithm, a method for solving the Diophantine equation ax + by = d where d is the greatest common divisor of a and b