When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    The hyperbolic distance between two points on the hyperboloid can then be identified with the relative rapidity between the two corresponding observers. The model generalizes directly to an additional dimension: a hyperbolic 3-space three-dimensional hyperbolic geometry relates to Minkowski 4-space.

  3. Hilbert metric - Wikipedia

    en.wikipedia.org/wiki/Hilbert_metric

    In mathematics, the Hilbert metric, also known as the Hilbert projective metric, is an explicitly defined distance function on a bounded convex subset of the n-dimensional Euclidean space R n. It was introduced by David Hilbert ( 1895 ) as a generalization of Cayley's formula for the distance in the Cayley–Klein model of hyperbolic geometry ...

  4. Hyperbolic metric space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_metric_space

    In mathematics, a hyperbolic metric space is a metric space satisfying certain metric relations (depending quantitatively on a nonnegative real number δ) between points. The definition, introduced by Mikhael Gromov , generalizes the metric properties of classical hyperbolic geometry and of trees .

  5. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. [1] Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry.

  6. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Let f be the distance from the vertex V (on both the hyperbola and its axis through the two foci) to the nearer focus. Then the distance, along a line perpendicular to that axis, from that focus to a point P on the hyperbola is greater than 2f. The tangent to the hyperbola at P intersects that axis at point Q at an angle ∠PQV of greater than ...

  7. Poincaré half-plane model - Wikipedia

    en.wikipedia.org/wiki/Poincaré_half-plane_model

    The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...

  8. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t , sin t ) form a circle with a unit radius , the points (cosh t , sinh t ) form the right half of the unit hyperbola .

  9. Hyperbolic sector - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_sector

    A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points (a, 1/a) and (b, 1/b) on the rectangular hyperbola xy = 1, or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola.