Search results
Results From The WOW.Com Content Network
Work hardening, also known as strain hardening, is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation. This characteristic is what sets ductile materials apart from brittle materials. [1] Work hardening may be desirable, undesirable, or inconsequential, depending on the application.
The strain hardening exponent (also called the strain hardening index), usually denoted , is a measured parameter that quantifies the ability of a material to become stronger due to strain hardening. Strain hardening (work hardening) is the process by which a material's load-bearing capacity increases during plastic (permanent) strain, or ...
Engineered Cementitious Composite (ECC), also called Strain Hardening Cement-based Composites (SHCC) or more popularly as bendable concrete, is an easily molded mortar-based composite reinforced with specially selected short random fibers, usually polymer fibers. [1]
Under tensile stress, plastic deformation is characterized by a strain hardening region and a necking region and finally, fracture (also called rupture). During strain hardening the material becomes stronger through the movement of atomic dislocations. The necking phase is indicated by a reduction in cross-sectional area of the specimen.
The amount of strain in the stable neck is called the natural draw ratio [6] because it is determined by the material's hardening characteristics, not the amount of drawing imposed on the material. Ductile polymers often exhibit stable necks because molecular orientation provides a mechanism for hardening that predominates at large strains. [7]
Finally, the last stage represents a saturation in strain relaxation due to strain hardening. [7] Strain engineering has been well-studied in complex oxide systems, in which epitaxial strain can strongly influence the coupling between the spin, charge, and orbital degrees of freedom, and thereby impact the electrical and magnetic properties.
Hardening is a metallurgical metalworking process used to increase the hardness of a metal. The hardness of a metal is directly proportional to the uniaxial yield stress at the location of the imposed strain. A harder metal will have a higher resistance to plastic deformation than a less hard metal.
The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening), showing a smooth elastic-plastic transition.