When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    The net acceleration is directed towards the interior of the circle (but does not pass through its center). The net acceleration may be resolved into two components: tangential acceleration and centripetal acceleration. Unlike tangential acceleration, centripetal acceleration is present in both uniform and non-uniform circular motion.

  3. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    For a body moving in a circle of radius at a constant speed , its acceleration has a magnitude = and is directed toward the center of the circle. [ note 9 ] The force required to sustain this acceleration, called the centripetal force , is therefore also directed toward the center of the circle and has magnitude m v 2 / r {\displaystyle mv^{2}/r} .

  4. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    The SI unit for acceleration is metre per second squared (m⋅s −2, ). For example, when a vehicle starts from a standstill (zero velocity, in an inertial frame of reference) and travels in a straight line at increasing speeds, it is accelerating in the direction of travel. If the vehicle turns, an acceleration occurs toward the new direction ...

  5. Tangential speed - Wikipedia

    en.wikipedia.org/wiki/Tangential_speed

    Travelling a greater distance in the same time means a greater speed, and so linear speed is greater on the outer edge of a rotating object than it is closer to the axis. This speed along a circular path is known as tangential speed because the direction of motion is tangent to the circumference of the circle. For circular motion, the terms ...

  6. Fictitious force - Wikipedia

    en.wikipedia.org/wiki/Fictitious_force

    As a related example, suppose the moving coordinate system B rotates with a constant angular speed ω in a circle of radius R about the fixed origin of inertial frame A, but maintains its coordinate axes fixed in orientation, as in Figure 3. The acceleration of an observed body is now (see Eq. 1):

  7. Centrifugal force - Wikipedia

    en.wikipedia.org/wiki/Centrifugal_force

    Newton's law of motion for a particle of mass m written in vector form is: = , where F is the vector sum of the physical forces applied to the particle and a is the absolute acceleration (that is, acceleration in an inertial frame) of the particle, given by: = , where r is the position vector of the particle (not to be confused with radius, as ...

  8. Motion - Wikipedia

    en.wikipedia.org/wiki/Motion

    For a constant mass, force equals mass times acceleration (=). For every action, there is an equal and opposite reaction. (In other words, whenever one body exerts a force F → {\displaystyle {\vec {F}}} onto a second body, (in some cases, which is standing still) the second body exerts the force − F → {\displaystyle -{\vec {F}}} back onto ...

  9. Rotating reference frame - Wikipedia

    en.wikipedia.org/wiki/Rotating_reference_frame

    An everyday example of a rotating reference frame is the surface of the Earth. (This article considers only frames rotating about a fixed axis. For more general rotations, see Euler angles.) In the inertial frame of reference (upper part of the picture), the black ball moves in a straight line.