Search results
Results From The WOW.Com Content Network
In theoretical computer science, the continuous knapsack problem (also known as the fractional knapsack problem) is an algorithmic problem in combinatorial optimization in which the goal is to fill a container (the "knapsack") with fractional amounts of different materials chosen to maximize the value of the selected materials.
The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.
The most common problem being solved is the 0-1 knapsack problem, which restricts the number of copies of each kind of item to zero or one. Given a set of n {\displaystyle n} items numbered from 1 up to n {\displaystyle n} , each with a weight w i {\displaystyle w_{i}} and a value v i {\displaystyle v_{i}} , along with a maximum weight capacity ...
Many of these problems can be related to real-life packaging, storage and transportation issues. Each packing problem has a dual covering problem, which asks how many of the same objects are required to completely cover every region of the container, where objects are allowed to overlap. In a bin packing problem, people are given:
The problem of fractional knapsack with penalties was introduced by Malaguti, Monaci, Paronuzzi and Pferschy. [44] They developed an FPTAS and a dynamic program for the problem, and they showed an extensive computational study comparing the performance of their models.
The separation oracle for the dual LP can be implemented by solving the knapsack problem with sizes s and values y: if the optimal solution of the knapsack problem has a total value at most 1, then y is feasible; if it is larger than 1, than y is not feasible, and the optimal solution of the knapsack problem identifies a configuration for which ...
The knapsack problem can be solved by dynamic programming in pseudo-polynomial time: (), where m is the number of inputs and V is the number of different possible values. To get a polynomial-time algorithm, we can solve the knapsack problem approximately, using input rounding.
NP-hard problems vary greatly in their approximability; some, such as the knapsack problem, can be approximated within a multiplicative factor +, for any fixed >, and therefore produce solutions arbitrarily close to the optimum (such a family of approximation algorithms is called a polynomial-time approximation scheme or PTAS).