Search results
Results From The WOW.Com Content Network
Radius: a line segment joining the centre of a circle with any single point on the circle itself; or the length of such a segment, which is half (the length of) a diameter. Usually, the radius is denoted r {\displaystyle r} and required to be a positive number.
To construct a diameter parallel to a given line, choose the chord to be perpendicular to the line. The circle having a given line segment as its diameter can be constructed by straightedge and compass, by finding the midpoint of the segment and then drawing the circle centered at the midpoint through one of the ends of the line segment.
In square mils, the area of a circle with a diameter of 1 mil is: = = = = ( ) = . By definition, this area is also equal to 1 circular mil, so = . The conversion factor from square mils to circular mils is therefore 4/ π cmil per square mil:
where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.
Circle with similar triangles: circumscribed side, inscribed side and complement, inscribed split side and complement. Let one side of an inscribed regular n-gon have length s n and touch the circle at points A and B. Let A′ be the point opposite A on the circle, so that A′A is a diameter, and A′AB is an inscribed triangle on a diameter.
The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. [1] More generally, the perimeter is the curve length around any closed figure. Circumference may also refer to the circle itself, that is, the locus corresponding to the edge of a disk.
The number π (/ p aɪ / ⓘ; spelled out as "pi") is a mathematical constant, approximately equal to 3.14159, that is the ratio of a circle's circumference to its diameter.It appears in many formulae across mathematics and physics, and some of these formulae are commonly used for defining π, to avoid relying on the definition of the length of a curve.
Proposition one states: The area of any circle is equal to a right-angled triangle in which one of the sides about the right angle is equal to the radius, and the other to the circumference of the circle. Any circle with a circumference c and a radius r is equal in area with a right triangle with the two legs being c and r.