Ad
related to: activated complex
Search results
Results From The WOW.Com Content Network
The activated complex is an arrangement of atoms in an arbitrary region near the saddle point of a potential energy surface. [1] The region represents not one defined state, but a range of unstable configurations that a collection of atoms pass through between the reactants and products of a reaction.
Rates of reaction can be studied by examining activated complexes near the saddle point of a potential energy surface. The details of how these complexes are formed are not important. The saddle point itself is called the transition state. The activated complexes are in a special equilibrium (quasi-equilibrium) with the reactant molecules.
The concept of a transition state has been important in many theories of the rates at which chemical reactions occur. This started with the transition state theory (also referred to as the activated complex theory), developed independently in 1935 by Eyring, Evans and Polanyi, and introduced basic concepts in chemical kinetics that are still used today.
A chain reaction is an example of a complex mechanism, in which the propagation steps form a closed cycle. In a chain reaction, the intermediate produced in one step generates an intermediate in another step. Intermediates are called chain carriers. Sometimes, the chain carriers are radicals, they can be ions as well.
The equation follows from the transition state theory, also known as activated-complex theory. If one assumes a constant enthalpy of activation and constant entropy of activation, the Eyring equation is similar to the empirical Arrhenius equation , despite the Arrhenius equation being empirical and the Eyring equation based on statistical ...
An increase in solvent polarity decreases the rates of reactions where there is less charge in the activated complex in comparison to the starting materials; A change in solvent polarity will have little or no effect on the rates of reaction when there is little or no difference in charge between the reactants and the activated complex. [6]
The system of the reactants becomes coupled so tightly during the reaction that they form the activated complex as an integral entity. The solvent here has a minor effect. By contrast, in outer sphere redox reactions the displacement of nuclei in the reactants are small, here the solvent has the dominant role.
The process of chemical reaction can be considered as involving the diffusion of reactants until they encounter each other in the right stoichiometry and form an activated complex which can form the product species. The observed rate of chemical reactions is, generally speaking, the rate of the slowest or "rate determining" step.