When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maximum a posteriori estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_a_posteriori...

    An estimation procedure that is often claimed to be part of Bayesian statistics is the maximum a posteriori (MAP) estimate of an unknown quantity, that equals the mode of the posterior density with respect to some reference measure, typically the Lebesgue measure.

  3. Prior probability - Wikipedia

    en.wikipedia.org/wiki/Prior_probability

    For example, the maximum entropy prior on a discrete space, given only that the probability is normalized to 1, is the prior that assigns equal probability to each state. And in the continuous case, the maximum entropy prior given that the density is normalized with mean zero and unit variance is the standard normal distribution.

  4. A priori estimate - Wikipedia

    en.wikipedia.org/wiki/A_priori_estimate

    A priori is Latin for "from before" and refers to the fact that the estimate for the solution is derived before the solution is known to exist. One reason for their importance is that if one can prove an a priori estimate for solutions of a differential equation, then it is often possible to prove that solutions exist using the continuity ...

  5. Posterior probability - Wikipedia

    en.wikipedia.org/wiki/Posterior_probability

    From a given posterior distribution, various point and interval estimates can be derived, such as the maximum a posteriori (MAP) or the highest posterior density interval (HPDI). [4] But while conceptually simple, the posterior distribution is generally not tractable and therefore needs to be either analytically or numerically approximated. [5]

  6. Bayes estimator - Wikipedia

    en.wikipedia.org/wiki/Bayes_estimator

    In estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function (i.e., the posterior expected loss).

  7. A priori and a posteriori - Wikipedia

    en.wikipedia.org/wiki/A_priori_and_a_posteriori

    A priori ('from the earlier') and a posteriori ('from the later') are Latin phrases used in philosophy to distinguish types of knowledge, justification, or argument by their reliance on experience. A priori knowledge is independent from any experience .

  8. Conjugate prior - Wikipedia

    en.wikipedia.org/wiki/Conjugate_prior

    In Bayesian probability theory, if, given a likelihood function (), the posterior distribution is in the same probability distribution family as the prior probability distribution (), the prior and posterior are then called conjugate distributions with respect to that likelihood function and the prior is called a conjugate prior for the likelihood function ().

  9. Bayesian inference - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference

    Bayesian inference (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a method of statistical inference in which Bayes' theorem is used to calculate a probability of a hypothesis, given prior evidence, and update it as more information becomes available.