Search results
Results From The WOW.Com Content Network
List of some addition polymers and their uses Polymer Abbreviation Properties Uses Low-density polyethylene: LDPE: Chemically inert, flexible, insulator: Squeeze bottles, toys, flexible pipes, insulation cover (electric wires), six-pack rings, etc. High-density polyethylene: HDPE: Inert, thermally stable, tough and high tensile strength
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.
The tensile strength of a material quantifies how much elongating stress the material will endure before failure. [49] [50] This is very important in applications that rely upon a polymer's physical strength or durability. For example, a rubber band with a higher tensile strength will hold a greater weight before snapping.
The novel polymeric alloy core layer/s is made of a high performance polymer compound with a storage modulus of ≥1400 MPa at 23 °C, measured by Dynamic Mechanical Analysis (DMA) at a frequency of 1 Hz according to ASTM D4065; or an ultimate tensile strength of at least 30 MPa.
When Kevlar is spun, the resulting fiber has a tensile strength of about 3,620 MPa (525,000 psi), [23] and a relative density of 1.44 (0.052 lb/in 3). The polymer owes its high strength to the many inter-chain bonds. These inter-molecular hydrogen bonds form between the carbonyl groups and NH centers.
At high temperatures, the strain due to creep is quite appreciable. [2] Density: Mass per unit volume (kg/m^3) Ductility: Ability of a material to deform under tensile load (% elongation). It is the property of a material by which it can be drawn into wires under the action of tensile force.
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...
PAN has properties involving low density, thermal stability, high strength and modulus of elasticity. These unique properties have made PAN an essential polymer in high tech. Its high tensile strength and tensile modulus are established by fiber sizing, coatings, production processes, and PAN's fiber chemistry.