Search results
Results From The WOW.Com Content Network
Observation: If g : S → Y is a function and G is the canonical set-valued function induced by g (i.e. G : S → 2 Y is defined by G(s) := { g(s) } for every s ∈ S) then since Gr g = Gr G, g has a closed (resp. sequentially closed, open, sequentially open) graph in X × Y if and only if the same is true of G.
Closed graph theorem [5] — If : is a map from a topological space into a Hausdorff space, then the graph of is closed if : is continuous. The converse is true when Y {\displaystyle Y} is compact .
The usual proof of the closed graph theorem employs the open mapping theorem.It simply uses a general recipe of obtaining the closed graph theorem from the open mapping theorem; see closed graph theorem § Relation to the open mapping theorem (this deduction is formal and does not use linearity; the linearity is needed to appeal to the open mapping theorem which relies on the linearity.)
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
The Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. [2]By contrast, the Brouwer fixed-point theorem (1911) is a non-constructive result: it says that any continuous function from the closed unit ball in n-dimensional Euclidean space to itself must have a fixed point, [3] but it doesn ...
Let ≤ be a partial order over a set X and let f: X → X be a function over X. Then a prefixed point (also spelled pre-fixed point, sometimes shortened to prefixpoint or pre-fixpoint) [citation needed] of f is any p such that f(p) ≤ p. Analogously, a postfixed point of f is any p such that p ≤ f(p). [3] The opposite usage occasionally ...
The following properties are easily checked for a linear operator f : D(f) ⊆ X → Y between Banach spaces: If A is closed then A − λId D(f) is closed where λ is a scalar and Id D(f) is the identity function; If f is closed, then its kernel (or nullspace) is a closed vector subspace of X; If f is closed and injective then its inverse f ...
The function which takes the value 0 for rational number and 1 for irrational number (cf. Dirichlet function) is bounded. Thus, a function does not need to be "nice" in order to be bounded. The set of all bounded functions defined on [ 0 , 1 ] {\displaystyle [0,1]} is much larger than the set of continuous functions on that interval.