When.com Web Search

  1. Ad

    related to: orthogonal techniques examples problems solver math formula booklet

Search results

  1. Results From The WOW.Com Content Network
  2. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...

  3. Orthogonal Procrustes problem - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_Procrustes_problem

    The orthogonal Procrustes problem [1] is a matrix approximation problem in linear algebra. In its classical form, one is given two matrices A {\displaystyle A} and B {\displaystyle B} and asked to find an orthogonal matrix Ω {\displaystyle \Omega } which most closely maps A {\displaystyle A} to B {\displaystyle B} .

  4. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Hilbert matrix — example of a matrix which is extremely ill-conditioned (and thus difficult to handle) Wilkinson matrix — example of a symmetric tridiagonal matrix with pairs of nearly, but not exactly, equal eigenvalues; Convergent matrix — square matrix whose successive powers approach the zero matrix; Algorithms for matrix multiplication:

  5. Procrustes analysis - Wikipedia

    en.wikipedia.org/wiki/Procrustes_analysis

    In mathematics: an orthogonal Procrustes problem is a method which can be used to find out the optimal rotation and/or reflection (i.e., the optimal orthogonal linear transformation) for the Procrustes Superimposition (PS) of an object with respect to another.

  6. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    In Euclidean space, two vectors are orthogonal if and only if their dot product is zero, i.e. they make an angle of 90° (radians), or one of the vectors is zero. [4] Hence orthogonality of vectors is an extension of the concept of perpendicular vectors to spaces of any dimension.

  7. Orthogonal functions - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_functions

    Several sets of orthogonal functions have become standard bases for approximating functions. For example, the sine functions sin nx and sin mx are orthogonal on the interval x ∈ ( − π , π ) {\displaystyle x\in (-\pi ,\pi )} when m ≠ n {\displaystyle m\neq n} and n and m are positive integers.

  8. Approximation theory - Wikipedia

    en.wikipedia.org/wiki/Approximation_theory

    A closely related topic is the approximation of functions by generalized Fourier series, that is, approximations based upon summation of a series of terms based upon orthogonal polynomials. One problem of particular interest is that of approximating a function in a computer mathematical library, using operations that can be performed on the ...

  9. Classical orthogonal polynomials - Wikipedia

    en.wikipedia.org/wiki/Classical_orthogonal...

    Classical orthogonal polynomials appeared in the early 19th century in the works of Adrien-Marie Legendre, who introduced the Legendre polynomials. In the late 19th century, the study of continued fractions to solve the moment problem by P. L. Chebyshev and then A.A. Markov and T.J. Stieltjes led to the general notion of orthogonal polynomials.