Search results
Results From The WOW.Com Content Network
With the release of version 0.3.0 in April 2016 [4] the use in production and research environments became more widespread. The package was reviewed several months later on the R blog The Beginner Programmer as "R provides a simple and very user friendly package named rnn for working with recurrent neural networks.", [5] which further increased usage.
OpenNN (Open Neural Networks Library) is a software library written in the C++ programming language which implements neural networks, a main area of deep learning research. [1] The library is open-source , licensed under the GNU Lesser General Public License .
SNNS research neural network simulator. Historically, the most common type of neural network software was intended for researching neural network structures and algorithms. The primary purpose of this type of software is, through simulation, to gain a better understanding of the behavior and the properties of neural network
The Open Neural Network Exchange (ONNX) [ˈɒnɪks] [2] is an open-source artificial intelligence ecosystem [3] of technology companies and research organizations that establish open standards for representing machine learning algorithms and software tools to promote innovation and collaboration in the AI sector.
Linux, macOS, Windows: Python: Python: Only on Linux No Yes No Yes Yes Keras: François Chollet 2015 MIT license: Yes Linux, macOS, Windows: Python: Python, R: Only if using Theano as backend Can use Theano, Tensorflow or PlaidML as backends Yes No Yes Yes [20] Yes Yes No [21] Yes [22] Yes MATLAB + Deep Learning Toolbox (formally Neural Network ...
SNNS (Stuttgart Neural Network Simulator) is a neural network simulator originally developed at the University of Stuttgart. While it was originally built for X11 under Unix, there are Windows ports [citation needed]. Its successor JavaNNS never reached the same popularity.
In addition to standard neural networks, Keras has support for convolutional and recurrent neural networks. It supports other common utility layers like dropout, batch normalization, and pooling. [12] Keras allows users to produce deep models on smartphones (iOS and Android), on the web, or on the Java Virtual Machine. [8]
The neural system is defined by a possibly large number of neurons and their connections. In a NEST network, different neuron and synapse models can coexist. Any two neurons can have multiple connections with different properties. Thus, the connectivity can in general not be described by a weight or connectivity matrix but rather as an ...