When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.

  3. Measurement in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Measurement_in_quantum...

    The Pauli matrices are traceless and orthogonal to one another with respect to the Hilbert–Schmidt inner product, and so the coordinates (,,) of the state are the expectation values of the three von Neumann measurements defined by the Pauli matrices.

  4. Quantum logic gate - Wikipedia

    en.wikipedia.org/wiki/Quantum_logic_gate

    The Pauli matrices are involutory, meaning that the square of a Pauli matrix is the identity matrix. ... For more information see the Bell test experiments.

  5. Purity (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Purity_(quantum_mechanics)

    A graphical intuition of purity may be gained by looking at the relation between the density matrix and the Bloch sphere, = (+), where is the vector representing the quantum state (on or inside the sphere), and = (,,) is the vector of the Pauli matrices. Since Pauli matrices are traceless, it still holds that tr(ρ) = 1.

  6. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    There were some precursors to Cartan's work with 2×2 complex matrices: Wolfgang Pauli had used these matrices so intensively that elements of a certain basis of a four-dimensional subspace are called Pauli matrices σ i, so that the Hermitian matrix is written as a Pauli vector. [2] In the mid 19th century the algebraic operations of this algebra of four complex dimensions were studied as ...

  7. Spin matrix - Wikipedia

    en.wikipedia.org/wiki/Spin_matrix

    Pauli matrices, also called the "Pauli spin matrices". Generalizations of Pauli matrices; Gamma matrices, which can be represented in terms of the Pauli matrices.

  8. Spin (physics) - Wikipedia

    en.wikipedia.org/wiki/Spin_(physics)

    Thomas' result convinced Pauli that electron spin was the correct interpretation of his two-valued degree of freedom, while he continued to insist that the classical rotating charge model is invalid. [34] [6] In 1927, Pauli formalized the theory of spin using the theory of quantum mechanics invented by Erwin Schrödinger and Werner Heisenberg.

  9. Spin-1/2 - Wikipedia

    en.wikipedia.org/wiki/Spin-1/2

    When spinors are used to describe the quantum states, the three spin operators (S x, S y, S z,) can be described by 2 × 2 matrices called the Pauli matrices whose eigenvalues are ± ⁠ ħ / 2 ⁠. For example, the spin projection operator S z affects a measurement of the spin in the z direction.