Search results
Results From The WOW.Com Content Network
The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.
The Pauli matrices are traceless and orthogonal to one another with respect to the Hilbert–Schmidt inner product, and so the coordinates (,,) of the state are the expectation values of the three von Neumann measurements defined by the Pauli matrices.
A graphical intuition of purity may be gained by looking at the relation between the density matrix and the Bloch sphere, = (+), where is the vector representing the quantum state (on or inside the sphere), and = (,,) is the vector of the Pauli matrices. Since Pauli matrices are traceless, it still holds that tr(ρ) = 1.
The identity gate is the identity matrix, usually written as I, ... The Pauli matrices are involutory, ... For more information see the Bell test experiments.
Pauli matrices, also called the "Pauli spin matrices". Generalizations of Pauli matrices; Gamma matrices, which can be represented in terms of the Pauli matrices.
Pauli matrices: A set of three 2 × 2 complex Hermitian and unitary matrices. When combined with the I 2 identity matrix, they form an orthogonal basis for the 2 × 2 complex Hermitian matrices. Redheffer matrix: Encodes a Dirichlet convolution. Matrix entries are given by the divisor function; entires of the inverse are given by the Möbius ...
Given a unit vector in 3 dimensions, for example (a, b, c), one takes a dot product with the Pauli spin matrices to obtain a spin matrix for spin in the direction of the unit vector. The eigenvectors of that spin matrix are the spinors for spin-1/2 oriented in the direction given by the vector. Example: u = (0.8, -0.6, 0) is a unit vector ...
When spinors are used to describe the quantum states, the three spin operators (S x, S y, S z,) can be described by 2 × 2 matrices called the Pauli matrices whose eigenvalues are ± ħ / 2 . For example, the spin projection operator S z affects a measurement of the spin in the z direction.