When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Minimum description length - Wikipedia

    en.wikipedia.org/wiki/Minimum_description_length

    MDL applies in machine learning when algorithms (machines) generate descriptions. Learning occurs when an algorithm generates a shorter description of the same data set. The theoretic minimum description length of a data set, called its Kolmogorov complexity, cannot, however, be computed.

  3. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    A machine learning model is a type of mathematical model that, once "trained" on a given dataset, can be used to make predictions or classifications on new data.

  4. Probably approximately correct learning - Wikipedia

    en.wikipedia.org/wiki/Probably_approximately...

    In computational learning theory, probably approximately correct (PAC) learning is a framework for mathematical analysis of machine learning. It was proposed in 1984 by Leslie Valiant . [ 1 ]

  5. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  6. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Empirically, for machine learning heuristics, choices of a function that do not satisfy Mercer's condition may still perform reasonably if at least approximates the intuitive idea of similarity. [6] Regardless of whether k {\displaystyle k} is a Mercer kernel, k {\displaystyle k} may still be referred to as a "kernel".

  7. Empirical risk minimization - Wikipedia

    en.wikipedia.org/wiki/Empirical_risk_minimization

    In general, the risk () cannot be computed because the distribution (,) is unknown to the learning algorithm. However, given a sample of iid training data points, we can compute an estimate, called the empirical risk, by computing the average of the loss function over the training set; more formally, computing the expectation with respect to the empirical measure:

  8. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    Sometimes models are intimately associated with a particular learning rule. A common use of the phrase "ANN model" is really the definition of a class of such functions (where members of the class are obtained by varying parameters, connection weights, or specifics of the architecture such as the number of neurons, number of layers or their ...

  9. Sample complexity - Wikipedia

    en.wikipedia.org/wiki/Sample_complexity

    It is equivalent to a model-free brute force search in the state space. In contrast, a high-efficiency algorithm has a low sample complexity. [11] Possible techniques for reducing the sample complexity are metric learning [12] and model-based reinforcement learning. [13]