Search results
Results From The WOW.Com Content Network
In even a slight presence of water, carbonic acid dehydrates to carbon dioxide and water, which then catalyzes further decomposition. [6] For this reason, carbon dioxide can be considered the carbonic acid anhydride. The hydration equilibrium constant at 25 °C is [H 2 CO 3]/[CO 2] ≈ 1.7×10 −3 in pure water [12] and ≈ 1.2×10 −3 in ...
pK a H 2 CO 3 is the negative logarithm (base 10) of the acid dissociation constant of carbonic acid. It is equal to 6.1. [HCO − 3] is the concentration of bicarbonate in the blood [H 2 CO 3] is the concentration of carbonic acid in the blood
In chemistry, biochemistry, and pharmacology, a dissociation constant (K D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions.
Acid dissociation constants are also essential in aquatic chemistry and chemical oceanography, where the acidity of water plays a fundamental role. In living organisms, acid–base homeostasis and enzyme kinetics are dependent on the p K a values of the many acids and bases present in the cell and in the body.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
A concentrated hydrogen peroxide solution can be easily decomposed to water and oxygen. An example of a spontaneous (without addition of an external energy source) decomposition is that of hydrogen peroxide which slowly decomposes into water and oxygen (see video at right): 2 H 2 O 2 → 2 H 2 O + O 2
The self-ionization of water (also autoionization of water, autoprotolysis of water, autodissociation of water, or simply dissociation of water) is an ionization reaction in pure water or in an aqueous solution, in which a water molecule, H 2 O, deprotonates (loses the nucleus of one of its hydrogen atoms) to become a hydroxide ion, OH −.
K w is the equilibrium constant for self-ionization of water, equal to 1.0 × 10 −14. Note that in solution H + exists as the hydronium ion H 3 O +, and further aquation of the hydronium ion has negligible effect on the dissociation equilibrium, except at very high acid concentration. Figure 2.