Search results
Results From The WOW.Com Content Network
In probability theory, the optional stopping theorem (or sometimes Doob's optional sampling theorem, for American probabilist Joseph Doob) says that, under certain conditions, the expected value of a martingale at a stopping time is equal to its initial expected value. Since martingales can be used to model the wealth of a gambler participating ...
Example of a stopping time: a hitting time of Brownian motion.The process starts at 0 and is stopped as soon as it hits 1. In probability theory, in particular in the study of stochastic processes, a stopping time (also Markov time, Markov moment, optional stopping time or optional time [1]) is a specific type of “random time”: a random variable whose value is interpreted as the time at ...
The concept of a stopped martingale leads to a series of important theorems, including, for example, the optional stopping theorem which states that, under certain conditions, the expected value of a martingale at a stopping time is equal to its initial value.
This result is usually called Lévy's zero–one law or Levy's upwards theorem. The reason for the name is that if is an event in , then the theorem says that [] almost surely, i.e., the limit of the probabilities is 0 or 1. In plain language, if we are learning gradually all the information that determines the outcome of an event, then we will ...
Note that assumption is satisfied when N is a stopping time for a sequence of independent random variables (X n) n∈. [ citation needed ] Assumption ( 3 ) is of more technical nature, implying absolute convergence and therefore allowing arbitrary rearrangement of an infinite series in the proof.
Optional stopping. Add languages. Add links. Article; Talk; ... Download QR code; Print/export Download as PDF; Printable version; In other projects
In mathematics, a local martingale is a type of stochastic process, satisfying the localized version of the martingale property. Every martingale is a local martingale; every bounded local martingale is a martingale; in particular, every local martingale that is bounded from below is a supermartingale, and every local martingale that is bounded from above is a submartingale; however, a local ...
In probability theory and statistics, a continuous-time stochastic process, or a continuous-space-time stochastic process is a stochastic process for which the index variable takes a continuous set of values, as contrasted with a discrete-time process for which the index variable takes only distinct values.