When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bivector - Wikipedia

    en.wikipedia.org/wiki/Bivector

    A description of the projective geometry can be constructed in the geometric algebra using basic operations. For example, given two distinct points in RP n−1 represented by vectors a and b the line containing them is given by a ∧ b (or b ∧ a). Two lines intersect in a point if A ∧ B = 0 for their bivectors A and B. This point is given ...

  3. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.

  4. Bivector (complex) - Wikipedia

    en.wikipedia.org/wiki/Bivector_(complex)

    Now (hr 2) 2 = (−1)(−1) = +1, and the biquaternion curve {exp θ(hr 2) : θ ∈ R} is a unit hyperbola in the plane {x + yr 2 : x, y ∈ R}. The spacetime transformations in the Lorentz group that lead to FitzGerald contractions and time dilation depend on a hyperbolic angle parameter. In the words of Ronald Shaw, "Bivectors are logarithms ...

  5. Universal geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Universal_geometric_algebra

    Some r-vectors are scalars (r = 0), vectors (r = 1) and bivectors (r = 2). One may generate a finite-dimensional GA by choosing a unit pseudoscalar (I). The set of all vectors that satisfy = is a vector space. The geometric product of the vectors in this vector space then defines the GA, of which I is a member.

  6. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.

  7. Biorthogonal system - Wikipedia

    en.wikipedia.org/wiki/Biorthogonal_system

    In mathematics, a biorthogonal system is a pair of indexed families of vectors ~ ~ such that ~, ~ =,, where and form a pair of topological vector spaces that are in duality, , is a bilinear mapping and , is the Kronecker delta.

  8. Bisection - Wikipedia

    en.wikipedia.org/wiki/Bisection

    In classical geometry, the bisection is a simple compass and straightedge construction, whose possibility depends on the ability to draw arcs of equal radii and different centers: The segment A B {\displaystyle AB} is bisected by drawing intersecting circles of equal radius r > 1 2 | A B | {\displaystyle r>{\tfrac {1}{2}}|AB|} , whose centers ...

  9. Viewpoints: Mathematical Perspective and Fractal Geometry in ...

    en.wikipedia.org/wiki/Viewpoints:_Mathematical...

    The first seven chapters of the book concern perspectivity, while its final two concern fractals and their geometry. [1] [2] Topics covered within the chapters on perspectivity include coordinate systems for the plane and for Euclidean space, similarity, angles, and orthocenters, one-point and multi-point perspective, and anamorphic art.