When.com Web Search

  1. Ads

    related to: algebraic geometry an introduction

Search results

  1. Results From The WOW.Com Content Network
  2. Algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Algebraic_geometry

    Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems. Classically, it studies zeros of multivariate polynomials ; the modern approach generalizes this in a few different aspects.

  3. Moduli space - Wikipedia

    en.wikipedia.org/wiki/Moduli_space

    In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects.

  4. Scheme (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Scheme_(mathematics)

    In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x 2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers).

  5. Algebraic geometry and analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Algebraic_geometry_and...

    In mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables. The deep relation between these ...

  6. Geometry - Wikipedia

    en.wikipedia.org/wiki/Geometry

    Algebraic geometry became an autonomous subfield of geometry c. 1900, with a theorem called Hilbert's Nullstellensatz that establishes a strong correspondence between algebraic sets and ideals of polynomial rings. This led to a parallel development of algebraic geometry, and its algebraic counterpart, called commutative algebra. [106]

  7. Minimal model program - Wikipedia

    en.wikipedia.org/wiki/Minimal_model_program

    Every irreducible complex algebraic curve is birational to a unique smooth projective curve, so the theory for curves is trivial. The case of surfaces was first investigated by the geometers of the Italian school around 1900; the contraction theorem of Guido Castelnuovo essentially describes the process of constructing a minimal model of any smooth projective surface.

  8. Derived algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Derived_algebraic_geometry

    Derived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras (over ), simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness (e.g., Tor) of the structure sheaf.

  9. Glossary of arithmetic and diophantine geometry - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_arithmetic_and...

    This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.