When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Layer (deep learning) - Wikipedia

    en.wikipedia.org/wiki/Layer_(Deep_Learning)

    It would be calculated, for example, as: [(input width 227 - kernel width 11) / stride 4] + 1 = [(227 - 11) / 4] + 1 = 55. Since the kernel output is the same length as width, its area is 55×55.) A layer in a deep learning model is a structure or network topology in the model's architecture, which takes information from the previous layers and ...

  3. Neural network - Wikipedia

    en.wikipedia.org/wiki/Neural_network

    There are two main types of neural network. In neuroscience, a biological neural network is a physical structure found in brains and complex nervous systems – a population of nerve cells connected by synapses. In machine learning, an artificial neural network is a mathematical model used to approximate nonlinear functions.

  4. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...

  5. History of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/History_of_artificial...

    Artificial neural networks (ANNs) are models created using machine learning to perform a number of tasks.Their creation was inspired by biological neural circuitry. [1] [a] While some of the computational implementations ANNs relate to earlier discoveries in mathematics, the first implementation of ANNs was by psychologist Frank Rosenblatt, who developed the perceptron. [1]

  6. Universal approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_approximation...

    Indeed, certain neural network families can directly apply the Kolmogorov–Arnold theorem to yield a universal approximation theorem. Robert Hecht-Nielsen showed that a three-layer neural network can approximate any continuous multivariate function. [22] This was extended to the discontinuous case by Vugar Ismailov. [23]

  7. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    A special case of recursive neural networks is the RNN whose structure corresponds to a linear chain. Recursive neural networks have been applied to natural language processing. [72] The Recursive Neural Tensor Network uses a tensor-based composition function for all nodes in the tree. [73]

  8. Neural network Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Neural_network_Gaussian...

    A Neural Network Gaussian Process (NNGP) is a Gaussian process (GP) obtained as the limit of a certain type of sequence of neural networks. Specifically, a wide variety of network architectures converges to a GP in the infinitely wide limit , in the sense of distribution .

  9. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    A multilayer perceptron (MLP) is a misnomer for a modern feedforward artificial neural network, consisting of fully connected neurons (hence the synonym sometimes used of fully connected network (FCN)), often with a nonlinear kind of activation function, organized in at least three layers, notable for being able to distinguish data that is not ...