Search results
Results From The WOW.Com Content Network
A centripetal force (from Latin centrum, "center" and petere, "to seek" [1]) is a force that makes a body follow a curved path.The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path.
The net acceleration may be resolved into two components: tangential acceleration and centripetal acceleration. Unlike tangential acceleration, centripetal acceleration is present in both uniform and non-uniform circular motion. This diagram shows the normal force (n) pointing in other directions rather than opposite to the weight force.
This inward acceleration is called centripetal acceleration, it requires a centripetal force to maintain the circular motion. This force is exerted by the ground upon the wheels, in this case, from the friction between the wheels and the road. [21] The car is accelerating, due to the unbalanced force, which causes it to move in a circle.
From the fixed inertial frame of reference above Earth, the train now rotates along with the rest of the Earth. 0.34% of the force of gravity provides the centripetal force needed to achieve the circular motion on that frame of reference. The remaining force, as measured by a scale, makes the train and passengers "lighter" than in the previous ...
Centripetal force causes the acceleration measured on the rotating surface of the Earth to differ from the acceleration that is measured for a free-falling body: the apparent acceleration in the rotating frame of reference is the total gravity vector minus a small vector toward the north–south axis of the Earth, corresponding to staying ...
This acceleration and the mass of the particle determine the necessary centripetal force, directed toward the centre of the circle, as the net force acting on this particle to keep it in this uniform circular motion.
Upper panel: Ball on a banked circular track moving with constant speed ; Lower panel: Forces on the ball.The resultant or net force on the ball found by vector addition of the normal force exerted by the road and vertical force due to gravity must equal the required force for centripetal acceleration dictated by the need to travel a circular path.
This equation relating the two radial forces can be understood qualitatively as follows. The difference in angular speeds (or equivalently, in angular momenta) causes a difference in the centripetal force requirement; to offset this, the radial force must be altered with an inverse-cube force.