Search results
Results From The WOW.Com Content Network
Almost all cell types exhibit some form of polarity, which enables them to carry out specialized functions. Classical examples of polarized cells are described below, including epithelial cells with apical-basal polarity, neurons in which signals propagate in one direction from dendrites to axons, and migrating cells.
Polarized light microscopy can mean any of a number of optical microscopy techniques involving polarized light. Simple techniques include illumination of the sample with polarized light. Directly transmitted light can, optionally, be blocked with a polariser oriented at 90 degrees to the illumination. More complex microscopy techniques which ...
The bioluminescence can be produced from compounds during the digestion of prey, from specialized mitochondrial cells in the organism called photocytes ("light producing" cells), or, similarly, associated with symbiotic bacteria in the organism that are cultured.
Epithelial polarity is one example of the cell polarity that is a fundamental feature of many types of cells. Epithelial cells feature distinct 'apical', 'lateral' and 'basal' plasma membrane domains. Epithelial cells connect to one another via their lateral membranes to form epithelial sheets that line cavities and surfaces throughout the ...
Therefore, no light from the source will be accepted by the analyzer, and the field will appear dark. Areas of the sample possessing birefringence will generally couple some of the x-polarized light into the y polarization; these areas will then appear bright against the dark background. Modifications to this basic principle can differentiate ...
Photobiology is the scientific study of the beneficial and harmful interactions of light (technically, non-ionizing radiation) in living organisms. [1] The field includes the study of photophysics, photochemistry, photosynthesis, photomorphogenesis, visual processing, circadian rhythms, photomovement, bioluminescence, and ultraviolet radiation effects.
Polarized membranes are key cellular components that aid in facilitating compartmentalization, cell-to-cell communication, and signaling. Cells actively utilize polarized membranes to form and maintain electrochemical gradients and regulate both intracellular and extracellular environments.
Bright-field illumination is useful for samples that have an intrinsic color, for example mitochondria or the observation of cytoplasmic streaming in Chara cells. Comparison of transillumination techniques used to generate contrast in a sample of tissue paper (1.559 μm/pixel)