When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. File:Double Eulerian cycles on de Bruijn digraphs (IA ...

    en.wikipedia.org/wiki/File:Double_Eulerian...

    A new algorithm to generate a class of double Eulerian cycles on graphs and digraphs is found. Double Eulerian cycles along the binary Good - de Bruijn digraph are partitioned by the run structure of their defining sequences.

  3. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    The number of Eulerian circuits in digraphs can be calculated using the so-called BEST theorem, named after de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte. The formula states that the number of Eulerian circuits in a digraph is the product of certain degree factorials and the number of rooted arborescences.

  4. Eulerian matroid - Wikipedia

    en.wikipedia.org/wiki/Eulerian_matroid

    For planar graphs, the properties of being Eulerian and bipartite are dual: a planar graph is Eulerian if and only if its dual graph is bipartite. As Welsh showed, this duality extends to binary matroids: a binary matroid is Eulerian if and only if its dual matroid is a bipartite matroid, a matroid in which every circuit has even cardinality.

  5. Chinese postman problem - Wikipedia

    en.wikipedia.org/wiki/Chinese_postman_problem

    When the graph has an Eulerian circuit (a closed walk that covers every edge once), that circuit is an optimal solution. Otherwise, the optimization problem is to find the smallest number of graph edges to duplicate (or the subset of edges with the minimum possible total weight) so that the resulting multigraph does have an Eulerian circuit. [ 1 ]

  6. Seven Bridges of Königsberg - Wikipedia

    en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

    Since the graph corresponding to historical Königsberg has four nodes of odd degree, it cannot have an Eulerian path. An alternative form of the problem asks for a path that traverses all bridges and also has the same starting and ending point. Such a walk is called an Eulerian circuit or an Euler tour. Such a circuit exists if, and only if ...

  7. BEST theorem - Wikipedia

    en.wikipedia.org/wiki/BEST_theorem

    In 1736, Euler showed that G has an Eulerian circuit if and only if G is connected and the indegree is equal to outdegree at every vertex. In this case G is called Eulerian. We denote the indegree of a vertex v by deg(v). The BEST theorem states that the number ec(G) of Eulerian circuits in a connected Eulerian graph G is given by the formula

  8. Euler tour technique - Wikipedia

    en.wikipedia.org/wiki/Euler_tour_technique

    The Euler tour technique (ETT), named after Leonhard Euler, is a method in graph theory for representing trees. The tree is viewed as a directed graph that contains two directed edges for each edge in the tree. The tree can then be represented as a Eulerian circuit of the directed graph, known as the Euler tour representation (ETR) of the tree

  9. Euler diagram - Wikipedia

    en.wikipedia.org/wiki/Euler_diagram

    For example, connectedness of zones might be enforced, or concurrency of curves or multiple points might be banned, as might tangential intersection of curves. In the adjacent diagram, examples of small Venn diagrams are transformed into Euler diagrams by sequences of transformations; some of the intermediate diagrams have concurrency of curves.