When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Band diagram - Wikipedia

    en.wikipedia.org/wiki/Band_diagram

    Band diagram for Schottky barrier at equilibrium Band diagram for semiconductor heterojunction at equilibrium. In solid-state physics of semiconductors, a band diagram is a diagram plotting various key electron energy levels (Fermi level and nearby energy band edges) as a function of some spatial dimension, which is often denoted x. [1]

  3. Electronic band structure - Wikipedia

    en.wikipedia.org/wiki/Electronic_band_structure

    Horizontal lines represent energy levels, while blocks represent energy bands. When the horizontal lines in these diagram are slanted then the energy of the level or band changes with distance. Diagrammatically, this depicts the presence of an electric field within the crystal system. Band diagrams are useful in relating the general band ...

  4. Band bending - Wikipedia

    en.wikipedia.org/wiki/Band_bending

    Band bending can be induced by several types of contact. In this section metal-semiconductor contact, surface state, applied bias and adsorption induced band bending are discussed. Figure 1: Energy band diagrams of the surface contact between metals and n-type semiconductors.

  5. Theory of solar cells - Wikipedia

    en.wikipedia.org/wiki/Theory_of_solar_cells

    Band diagram of a silicon solar cell, corresponding to very low current (horizontal Fermi level), very low voltage (metal valence bands at same height), and therefore very low illumination When a photon is absorbed, its energy is given to an electron in the crystal lattice.

  6. Band gap - Wikipedia

    en.wikipedia.org/wiki/Band_gap

    In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to the energy difference (often expressed in electronvolts ) between the top of the valence band and the ...

  7. Schottky barrier - Wikipedia

    en.wikipedia.org/wiki/Schottky_barrier

    Band diagram for n-type semiconductor Schottky barrier at zero bias (equilibrium) with graphical definition of the Schottky barrier height, Φ B, as the difference between the interfacial conduction band edge E C and Fermi level E F. [For a p-type Schottky barrier, Φ B is the difference between E F and the valence band edge E V.]

  8. Direct and indirect band gaps - Wikipedia

    en.wikipedia.org/wiki/Direct_and_indirect_band_gaps

    Energy vs. crystal momentum for a semiconductor with a direct band gap, showing that an electron can shift from the highest-energy state in the valence band (red) to the lowest-energy state in the conduction band (green) without a change in crystal momentum. Depicted is a transition in which a photon excites an electron from the valence band to ...

  9. Electron affinity - Wikipedia

    en.wikipedia.org/wiki/Electron_affinity

    The electron affinity (E ea) of an atom or molecule is defined as the amount of energy released when an electron attaches to a neutral atom or molecule in the gaseous state to form an anion. X(g) + e − → X − (g) + energy. This differs by sign from the energy change of electron capture ionization. [1]