When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity to the linear algebra of bilinear forms. Two elements u and v of a vector space with bilinear form B {\displaystyle B} are orthogonal when B ( u , v ) = 0 {\displaystyle B(\mathbf {u} ,\mathbf {v} )=0} .

  3. Orthogonal functions - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_functions

    In mathematics, orthogonal functions belong to a function space that is a vector space equipped with a bilinear form.When the function space has an interval as the domain, the bilinear form may be the integral of the product of functions over the interval:

  4. Orthogonality - Wikipedia

    en.wikipedia.org/wiki/Orthogonality

    The line segments AB and CD are orthogonal to each other. In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity.Whereas perpendicular is typically followed by to when relating two lines to one another (e.g., "line A is perpendicular to line B"), [1] orthogonal is commonly used without to (e.g., "orthogonal lines A and B").

  5. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    Visual understanding of multiplication by the transpose of a matrix. If A is an orthogonal matrix and B is its transpose, the ij-th element of the product AA T will vanish if i≠j, because the i-th row of A is orthogonal to the j-th row of A.

  6. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    The orthogonality and completeness of this set of solutions follows at once from the larger framework of Sturm–Liouville theory. The differential equation admits another, non-polynomial solution, the Legendre functions of the second kind. A two-parameter generalization of (Eq.

  7. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    The construction of orthogonality of vectors is motivated by a desire to extend the intuitive notion of perpendicular vectors to higher-dimensional spaces. In the Cartesian plane, two vectors are said to be perpendicular if the angle between them is 90° (i.e. if they form a right angle).

  8. Spherical harmonics - Wikipedia

    en.wikipedia.org/wiki/Spherical_harmonics

    One can determine the number of nodal lines of each type by counting the number of zeros of in the and directions respectively. Considering Y ℓ m {\displaystyle Y_{\ell }^{m}} as a function of θ {\displaystyle \theta } , the real and imaginary components of the associated Legendre polynomials each possess ℓ −| m | zeros, each giving rise ...

  9. Orthogonal basis - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_basis

    The concept of orthogonality may be extended to a vector space over any field of characteristic not 2 equipped with a quadratic form ⁠ ⁠.Starting from the observation that, when the characteristic of the underlying field is not 2, the associated symmetric bilinear form , = ((+) ()) allows vectors and to be defined as being orthogonal with respect to when ⁠ (+) () = ⁠.