When.com Web Search

  1. Ads

    related to: hilbert's 10th problem examples math worksheets free printable sight words

Search results

  1. Results From The WOW.Com Content Network
  2. Hilbert's tenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_tenth_problem

    Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.

  3. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    Hilbert's tenth problem does not ask whether there exists an algorithm for deciding the solvability of Diophantine equations, but rather asks for the construction of such an algorithm: "to devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers". That this ...

  4. Entscheidungsproblem - Wikipedia

    en.wikipedia.org/wiki/Entscheidungsproblem

    The Entscheidungsproblem is related to Hilbert's tenth problem, which asks for an algorithm to decide whether Diophantine equations have a solution. The non-existence of such an algorithm, established by the work of Yuri Matiyasevich , Julia Robinson , Martin Davis , and Hilary Putnam , with the final piece of the proof in 1970, also implies a ...

  5. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    When we recently wrote about the toughest math problems that have been solved, we mentioned one of the greatest achievements in 20th-century math: the solution to Fermat’s Last Theorem. Sir ...

  6. History of the Church–Turing thesis - Wikipedia

    en.wikipedia.org/wiki/History_of_the_Church...

    Hilbert's 2nd and 10th problems introduced the "Entscheidungsproblem" (the "decision problem"). In his 2nd problem he asked for a proof that "arithmetic" is " consistent ". Kurt Gödel would prove in 1931 that, within what he called "P" (nowadays called Peano Arithmetic ), "there exist undecidable sentences [propositions]". [ 4 ]

  7. Gödel's incompleteness theorems - Wikipedia

    en.wikipedia.org/wiki/Gödel's_incompleteness...

    Franzén (2005) explains how Matiyasevich's solution to Hilbert's 10th problem can be used to obtain a proof to Gödel's first incompleteness theorem. [11] Matiyasevich proved that there is no algorithm that, given a multivariate polynomial p ( x 1 , x 2 ,..., x k ) with integer coefficients, determines whether there is an integer solution to ...