Search results
Results From The WOW.Com Content Network
In modern JavaScript it's considered bad form to use the Array type as an associative array. Consensus is that the Object type and Map / WeakMap classes are best for this purpose. The reasoning behind this is that if Array is extended via prototype and Object is kept pristine, for and for-in loops will work as expected on associative 'arrays'.
The foreach statement in some languages has some defined order, processing each item in the collection from the first to the last. The foreach statement in many other languages, especially array programming languages, does not have any particular order.
Node.js programs are invoked by running the interpreter node interpreter with a given file, so the first two arguments will be node and the name of the JavaScript source file. It is often useful to extract the rest of the arguments by slicing a sub-array from process.argv .
import random # this function checks whether or not the array is sorted def is_sorted (random_array): for i in range (1, len (random_array)): if random_array [i] < random_array [i-1]: return False return True # this function repeatedly shuffles the elements of the array until they are sorted def bogo_sort (random_array): while not is_sorted (random_array): random. shuffle (random_array) return ...
An equivalent version which shuffles the array in the opposite direction (from lowest index to highest) is: -- To shuffle an array a of n elements (indices 0..n-1): for i from 0 to n−2 do j ← random integer such that i ≤ j ≤ n-1 exchange a[i] and a[j]
An Array is a JavaScript object prototyped from the Array constructor specifically designed to store data values indexed by integer keys. Arrays, unlike the basic Object type, are prototyped with methods and properties to aid the programmer in routine tasks (for example, join , slice , and push ).
Random access compared to sequential access. Random access (also called direct access) is the ability to access an arbitrary element of a sequence in equal time or any datum from a population of addressable elements roughly as easily and efficiently as any other, no matter how many elements may be in the set.
Thus, if the array is seen as a function on a set of possible index combinations, it is the dimension of the space of which its domain is a discrete subset. Thus a one-dimensional array is a list of data, a two-dimensional array is a rectangle of data, [12] a three-dimensional array a block of data, etc.