When.com Web Search

  1. Ad

    related to: proof by contradiction discrete math definition physics quizlet

Search results

  1. Results From The WOW.Com Content Network
  2. Proof by contradiction - Wikipedia

    en.wikipedia.org/wiki/Proof_by_contradiction

    More broadly, proof by contradiction is any form of argument that establishes a statement by arriving at a contradiction, even when the initial assumption is not the negation of the statement to be proved. In this general sense, proof by contradiction is also known as indirect proof, proof by assuming the opposite, [2] and reductio ad impossibile.

  3. Resolution (logic) - Wikipedia

    en.wikipedia.org/wiki/Resolution_(logic)

    In mathematical logic and automated theorem proving, resolution is a rule of inference leading to a refutation-complete theorem-proving technique for sentences in propositional logic and first-order logic. For propositional logic, systematically applying the resolution rule acts as a decision procedure for formula unsatisfiability, solving the ...

  4. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    Then P(n) is true for all natural numbers n. For example, we can prove by induction that all positive integers of the form 2n − 1 are odd. Let P(n) represent " 2n − 1 is odd": (i) For n = 1, 2n − 1 = 2 (1) − 1 = 1, and 1 is odd, since it leaves a remainder of 1 when divided by 2. Thus P(1) is true.

  5. Zeno's paradoxes - Wikipedia

    en.wikipedia.org/wiki/Zeno's_paradoxes

    Zeno's arguments may then be early examples of a method of proof called reductio ad absurdum, also known as proof by contradiction. Thus Plato has Zeno say the purpose of the paradoxes "is to show that their hypothesis that existences are many, if properly followed up, leads to still more absurd results than the hypothesis that they are one."

  6. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Cantor's diagonal argument (among various similar names [note 1]) is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers – informally, that there are sets which in some sense contain more elements than there are positive integers.

  7. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    e. In mathematics, an impossibility theorem is a theorem that demonstrates a problem or general set of problems cannot be solved. These are also known as proofs of impossibility, negative proofs, or negative results. Impossibility theorems often resolve decades or centuries of work spent looking for a solution by proving there is no solution.

  8. All horses are the same color - Wikipedia

    en.wikipedia.org/wiki/All_horses_are_the_same_color

    For a Chinese white horse paradox, see When a white horse is not a horse. All horses are the same color is a falsidical paradox that arises from a flawed use of mathematical induction to prove the statement All horses are the same color. [1] There is no actual contradiction, as these arguments have a crucial flaw that makes them incorrect.

  9. Contradiction - Wikipedia

    en.wikipedia.org/wiki/Contradiction

    This diagram shows the contradictory relationships between categorical propositions in the square of opposition of Aristotelian logic. In traditional logic, a contradiction occurs when a proposition conflicts either with itself or established fact. It is often used as a tool to detect disingenuous beliefs and bias.