When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fictitious force - Wikipedia

    en.wikipedia.org/wiki/Fictitious_force

    A fictitious force is a force that appears to act on a mass whose motion is described using a non-inertial frame of reference, such as a linearly accelerating or rotating reference frame. [1] Fictitious forces are invoked to maintain the validity and thus use of Newton's second law of motion, in frames of reference which are not inertial. [2]

  3. Coriolis force - Wikipedia

    en.wikipedia.org/wiki/Coriolis_force

    In physics, the Coriolis force is an inertial (or fictitious) force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motion of the object.

  4. Inertial frame of reference - Wikipedia

    en.wikipedia.org/wiki/Inertial_frame_of_reference

    In classical physics and special relativity, an inertial frame of reference (also called inertial space, or Galilean reference frame) is a stationary or uniformly moving frame of reference. Observed relative to such a frame, objects exhibit inertia, i.e., remain at rest until acted upon by external forces, and the laws of nature can be observed ...

  5. Centrifugal force - Wikipedia

    en.wikipedia.org/wiki/Centrifugal_force

    v. t. e. Centrifugal force is a fictitious force in Newtonian mechanics (also called an "inertial" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It appears to be directed radially away from the axis of rotation of the frame.

  6. Rotating reference frame - Wikipedia

    en.wikipedia.org/wiki/Rotating_reference_frame

    Obviously, a rotating frame of reference is a case of a non-inertial frame. Thus the particle in addition to the real force is acted upon by a fictitious force...The particle will move according to Newton's second law of motion if the total force acting on it is taken as the sum of the real and fictitious forces.

  7. D'Alembert's principle - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_principle

    The inertial force must act through the center of mass and the inertial torque can act anywhere. The system can then be analyzed exactly as a static system subjected to this "inertial force and moment" and the external forces. The advantage is that in the equivalent static system one can take moments about any point (not just the center of mass).

  8. Mechanics of planar particle motion - Wikipedia

    en.wikipedia.org/wiki/Mechanics_of_planar...

    v. t. e. Mechanics of planar particle motion[1] is the analysis of the motion of particles gravitationally attracted to one another which are observed from non-inertial reference frames [2][3][4] and the generalization of this problem to planetary motion. [5] This type of analysis is closely related to centrifugal force, two-body problem, orbit ...

  9. Euler force - Wikipedia

    en.wikipedia.org/wiki/Euler_force

    Euler force. In classical mechanics, the Euler force is the fictitious tangential force [1] that appears when a non-uniformly rotating reference frame is used for analysis of motion and there is variation in the angular velocity of the reference frame 's axes. The Euler acceleration (named for Leonhard Euler), also known as azimuthal ...