Search results
Results From The WOW.Com Content Network
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Potassium dichromate, K 2 Cr 2 O 7, is a common inorganic chemical reagent, most commonly used as an oxidizing agent in various laboratory and industrial applications. As with all hexavalent chromium compounds, it is acutely and chronically harmful to health.
A primary alcohol is an alcohol in which the hydroxy group is bonded to a primary carbon atom. It can also be defined as a molecule containing a “–CH 2 OH” group. [ 1 ] In contrast, a secondary alcohol has a formula “–CHROH” and a tertiary alcohol has a formula “–CR 2 OH”, where “R” indicates a carbon-containing group.
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
The Sarett oxidation is an organic reaction that oxidizes primary and secondary alcohols to aldehydes and ketones, respectively, using chromium trioxide and pyridine.Unlike the similar Jones oxidation, the Sarett oxidation will not further oxidize primary alcohols to their carboxylic acid form, neither will it affect carbon-carbon double bonds. [1]
Indeed, for ideal-gas reactions K p is independent of pressure. [17] Pressure dependence of the water ionization constant at 25 °C. In general, ionization in aqueous solutions tends to increase with increasing pressure. In a condensed phase, the pressure dependence of the equilibrium constant is associated with the reaction volume. [18] For ...
The vapor pressure affects the solute shown by Raoult's Law while the free energy change and chemical potential are shown by Gibbs free energy. Most solutes remain in the liquid phase and do not enter the gas phase, except at very high temperatures. In terms of vapor pressure, a liquid boils when its vapor pressure equals the surrounding pressure.
Organic redox reactions: the Birch reduction. Organic reductions or organic oxidations or organic redox reactions are redox reactions that take place with organic compounds.In organic chemistry oxidations and reductions are different from ordinary redox reactions, because many reactions carry the name but do not actually involve electron transfer. [1]