Search results
Results From The WOW.Com Content Network
Pyruvate dehydrogenase complex. Pyruvate dehydrogenase complex (PDC) is a complex of three enzymes that converts pyruvate into acetyl-CoA by a process called pyruvate decarboxylation. [1] Acetyl-CoA may then be used in the citric acid cycle to carry out cellular respiration, and this complex links the glycolysis metabolic pathway to the citric ...
Pyruvate dehydrogenase is an enzyme that catalyzes the reaction of pyruvate and a lipoamide to give the acetylated dihydrolipoamide and carbon dioxide. The conversion requires the coenzyme thiamine pyrophosphate. Pyruvate dehydrogenase is usually encountered as a component, referred to as E1, of the pyruvate dehydrogenase complex (PDC). PDC ...
The oxidative conversion of pyruvate into acetyl-CoA is referred to as the pyruvate dehydrogenase reaction. It is catalyzed by the pyruvate dehydrogenase complex. Other conversions between pyruvate and acetyl-CoA are possible. For example, pyruvate formate lyase disproportionates pyruvate into acetyl-CoA and formic acid. β-Oxidation of fatty acids
Pyruvate + NAD + + CoA → Acetyl-CoA + NADH + CO 2. Pyruvate oxidation is the step that connects glycolysis and the Krebs cycle. [4] In glycolysis, a single glucose molecule (6 carbons) is split into 2 pyruvates (3 carbons each). Because of this, the link reaction occurs twice for each glucose molecule to produce a total of 2 acetyl-CoA ...
Pyruvate is oxidized to acetyl-CoA and CO 2 by the pyruvate dehydrogenase complex (PDC). The PDC contains multiple copies of three enzymes and is located in the mitochondria of eukaryotic cells and in the cytosol of prokaryotes. In the conversion of pyruvate to acetyl-CoA, one molecule of NADH and one molecule of CO 2 is formed. [citation needed]
1. CO 2 is fixed to produce a four-carbon molecule (malate or aspartate). 2. The molecule exits the cell and enters the bundle sheath cells. 3. It is then broken down into CO 2 and pyruvate. CO 2 enters the Calvin cycle to produce carbohydrates. 4. Pyruvate reenters the mesophyll cell, where it is reused to produce malate or aspartate.
Pyruvate, the conjugate base, CH 3 COCOO −, is an intermediate in several metabolic pathways throughout the cell. Pyruvic acid can be made from glucose through glycolysis , converted back to carbohydrates (such as glucose) via gluconeogenesis , or converted to fatty acids through a reaction with acetyl-CoA . [ 3 ]
The name "dehydrogenase" is based on the idea that it facilitates the removal (de-) of hydrogen (-hydrogen-) and is an enzyme (-ase). Dehydrogenase reactions come most commonly in two forms: the transfer of a hydride and release of a proton (often with water as a second reactant), and the transfer of two hydrogens.