Search results
Results From The WOW.Com Content Network
Robot arms are described by their degrees of freedom. This is a practical metric, in contrast to the abstract definition of degrees of freedom which measures the aggregate positioning capability of a system. [3] In 2007, Dean Kamen, inventor of the Segway, unveiled a prototype robotic arm [4] with 14 degrees of freedom for DARPA.
An example of a simple open chain is a serial robot manipulator. These robotic systems are constructed from a series of links connected by six one degree-of-freedom revolute or prismatic joints, so the system has six degrees of freedom. An example of a simple closed chain is the RSSR spatial four-bar linkage.
Freedom and constraint topologies (a.k.a., freedom, actuation, and constraint topologies; or simply FACT) [1] [2] [3] is a mechanical design framework developed by Dr. Jonathan B. Hopkins. The framework offers a library of vector spaces with visual representations to guide the analysis and synthesis of flexible systems.
In mechanical engineering, an overconstrained mechanism is a linkage that has more degrees of freedom than is predicted by the mobility formula. The mobility formula evaluates the degree of freedom of a system of rigid bodies that results when constraints are imposed in the form of joints between the links.
In the case of planar motion, a body has only three degrees of freedom with only one rotational and two translational degrees of freedom. The degrees of freedom in planar motion can be easily demonstrated using a computer mouse. The degrees of freedom are: left-right, forward-backward and the rotation about the vertical axis.
An example of a simple open chain is a serial robot manipulator. These robotic systems are constructed from a series of links connected by six one degree-of-freedom revolute or prismatic joints, so the system has six degrees of freedom. An example of a simple closed chain is the RSSR spatial four-bar linkage.
A ship can be considered to have six degrees of freedom in its motion, i.e., it can translate and rotate on three perpendicular axes. Three of these involve translation: surge (longitudinal axis, forward/astern) sway (lateral axis, starboard/port) heave (vertical axis, up/down) and the other three rotation: roll (rotation about longitudinal axis)
The engineering design process, also known as the engineering method, is a common series of steps that engineers use in creating functional products and processes. The process is highly iterative – parts of the process often need to be repeated many times before another can be entered – though the part(s) that get iterated and the number of such cycles in any given project may vary.