Search results
Results From The WOW.Com Content Network
Upon heating, 2,4,6-trinitrobenzoic acid undergoes decarboxylation to give 1,3,5-trinitrobenzene. [4] Reduction with tin gives 2,4,6-triaminobenzenoic acid, a precursor to phloroglucinol (1,3,5-trihydroxybenzene).
In commercial applications, the alkylating agents are generally alkenes, some of the largest scale reactions practiced in industry.Such alkylations are of major industrial importance, e.g. for the production of ethylbenzene, the precursor to polystyrene, from benzene and ethylene and for the production of cumene from benzene and propene in cumene process:
Decarboxylation is a chemical reaction that removes a carboxyl group and releases carbon dioxide (CO 2). Usually, decarboxylation refers to a reaction of carboxylic acids , removing a carbon atom from a carbon chain.
In organic chemistry, a diethynylbenzene dianion is an anion consisting of two ethynyl anions as substituents on a benzene ring. With the chemical formula C 6 H 4 C 2− 4, three positional isomers are possible, differing in the relative positions of the two substituents around the ring: ortho-diethynylbenzene dianion; meta-diethynylbenzene dianion
The reaction is named after Cläre Hunsdiecker and her husband Heinz Hunsdiecker, whose work in the 1930s [5] [6] developed it into a general method. [1]The reaction was first demonstrated by Alexander Borodin in 1861 in his reports of the preparation of methyl bromide (CH 3 Br) from silver acetate (CH 3 CO 2 Ag).
In the absence of metal catalysts, decarbonylation (vs decarboxylation) is rarely observed in organic chemistry. One exception is the decarbonylation of formic acid: H CO OH → CO + H 2 O. The reaction is induced by sulfuric acid, which functions as both a catalyst and a dehydrating agent.
The reaction product is a derivative of benzene. Scheme 1. Bergman cyclization. The reaction proceeds by a thermal reaction or pyrolysis (above 200 °C) forming a short-lived and very reactive para-benzyne biradical species. It will react with any hydrogen donor such as 1,4-cyclohexadiene which converts to benzene.
The benzilic acid rearrangement is formally the 1,2-rearrangement of 1,2-diketones to form α-hydroxy–carboxylic acids using a base.This reaction receives its name from the reaction of benzil with potassium hydroxide to form benzilic acid.