Search results
Results From The WOW.Com Content Network
The knowledge of the cross section of a material can help to detect thin layers or 1D nanowires over a substrate. A right choice of the photon energy can enhance a small amount of material deposited over a surface, otherwise the display of the different spectra won't be possible. [1]
This cross section depends on the energy of the photon (proportional to its wavenumber) and the species being considered i.e. it depends on the structure of the molecular species. In the case of molecules, the photoionization cross-section can be estimated by examination of Franck-Condon factors between a ground-state molecule and the target ion.
The electron imager side can also be used to record photoionization cross sections, photoelectron energy and angular distributions. With the help of circularly polarized light, photoelectron circular dichroism (PECD) can be studied. [14] A thorough understanding of PECD effects could help explain the homochirality of life. [15]
A gamma ray cross section is a measure of the probability that a gamma ray interacts with matter. The total cross section of gamma ray interactions is composed of several independent processes: photoelectric effect, Compton (incoherent) scattering, electron-positron pair production in the nucleus field and electron-positron pair production in the electron field (triplet production).
Not every photon which encounters an atom or ion will photoionize it. The probability of photoionization is related to the photoionization cross-section, which depends on the energy of the photon and the target being considered. For photon energies below the ionization threshold, the photoionization cross-section is near zero.
Atmospheric pressure photoionization (APPI) is a soft ionization method used in mass spectrometry (MS) usually coupled to liquid chromatography (LC). Molecules are ionized using a vacuum ultraviolet (VUV) light source operating at atmospheric pressure (105 Pa), either by direct absorption followed by electron ejection or through ionization of a ...
Quantum microscopy allows microscopic properties of matter and quantum particles to be measured and imaged. Various types of microscopy use quantum principles. The first microscope to do so was the scanning tunneling microscope, which paved the way for development of the photoionization microscope and the quantum entanglement microscope.
Klein–Nishina distribution of scattering-angle cross sections over a range of commonly encountered energies. Electron-photon scattering cross section In particle physics , the Klein–Nishina formula gives the differential cross section (i.e. the "likelihood" and angular distribution) of photons scattered from a single free electron ...