Search results
Results From The WOW.Com Content Network
Examples of quantitative properties and qualitative phenomena that are explored with interatomic potentials include lattice parameters, surface energies, interfacial energies, adsorption, cohesion, thermal expansion, and elastic and plastic material behavior, as well as chemical reactions.
3 Interatomic potentials. 4 Oscillators. 5 Quantum Field theory. ... This is a list of potential energy functions that are frequently used in quantum mechanics and ...
The Morse potential, named after physicist Philip M. Morse, is a convenient interatomic interaction model for the potential energy of a diatomic molecule.It is a better approximation for the vibrational structure of the molecule than the quantum harmonic oscillator because it explicitly includes the effects of bond breaking, such as the existence of unbound states.
In computational chemistry and computational physics, the embedded atom model, embedded-atom method or EAM, is an approximation describing the energy between atoms and is a type of interatomic potential. The energy is a function of a sum of functions of the separation between an atom and its neighbors.
Energy may be released from a potential well if sufficient energy is added to the system such that the local maximum is surmounted. In quantum physics, potential energy may escape a potential well without added energy due to the probabilistic characteristics of quantum particles; in these cases a particle may be imagined to tunnel through the walls of a potential well.
In physics, a pair potential is a function that describes the potential energy of two interacting objects solely as a function of the distance between them. [ 1 ] Some interactions, like Coulomb's law in electrodynamics or Newton's law of universal gravitation in mechanics naturally have this form for simple spherical objects.
Bond order potential is a class of empirical (analytical) interatomic potentials which is used in molecular dynamics and molecular statics simulations. Examples include the Tersoff potential, [1] the EDIP potential, the Brenner potential, [2] the Finnis–Sinclair potentials, [3] ReaxFF, [4] and the second-moment tight-binding potentials. [5]
The BKS potential is a force field that may be used to simulate the interatomic potential between Silica glass atoms. [4] Rather than relying only on experimental data, the BKS potential is derived by combining ab initio quantum chemistry methods on small silica clusters to describe accurate interaction between nearest-neighbors, which is the ...