Ad
related to: standard deviation of returns calculator
Search results
Results From The WOW.Com Content Network
Stock A over the past 20 years had an average return of 10 percent, with a standard deviation of 20 percentage points (pp) and Stock B, over the same period, had average returns of 12 percent but a higher standard deviation of 30 pp. On the basis of risk and return, an investor may decide that Stock A is the safer choice, because Stock B's ...
Under the assumption of normality of returns, an active risk of x per cent would mean that approximately 2/3 of the portfolio's active returns (one standard deviation from the mean) can be expected to fall between +x and -x per cent of the mean excess return and about 95% of the portfolio's active returns (two standard deviations from the mean) can be expected to fall between +2x and -2x per ...
For an approximately normal data set, the values within one standard deviation of the mean account for about 68% of the set; while within two standard deviations account for about 95%; and within three standard deviations account for about 99.7%. Shown percentages are rounded theoretical probabilities intended only to approximate the empirical ...
For any fund that evolves randomly with time, volatility is defined as the standard deviation of a sequence of random variables, each of which is the return of the fund over some corresponding sequence of (equally sized) times. Thus, "annualized" volatility σ annually is the standard deviation of an instrument's yearly logarithmic returns. [2]
It is defined as the difference between the returns of the investment and the risk-free return, divided by the standard deviation of the investment returns. It represents the additional amount of return that an investor receives per unit of increase in risk. It was named after William F. Sharpe, [1] who developed it in 1966.
The MPT is a mean-variance theory, and it compares the expected (mean) return of a portfolio with the standard deviation of the same portfolio. The image shows expected return on the vertical axis, and the standard deviation on the horizontal axis (volatility). Volatility is described by standard deviation and it serves as a measure of risk. [7]
That is, it is the risk of the actual return being below the expected return, or the uncertainty about the magnitude of that difference. [ 1 ] [ 2 ] Risk measures typically quantify the downside risk, whereas the standard deviation (an example of a deviation risk measure ) measures both the upside and downside risk.
Calculate the sample standard deviation of the stock's returns over the past 30 trading days. Calculate the sample standard deviation of the stock's returns over the past 100 trading days. Calculate the implied volatility of the stock from some specified call option on the stock. These are three distinct risk measures.