Search results
Results From The WOW.Com Content Network
In computing, multiple instruction, multiple data (MIMD) is a technique employed to achieve parallelism. Machines using MIMD have a number of processor cores that function asynchronously and independently. At any time, different processors may be executing different instructions on different pieces of data.
Concurrent and parallel programming languages involve multiple timelines. Such languages provide synchronization constructs whose behavior is defined by a parallel execution model . A concurrent programming language is defined as one which uses the concept of simultaneously executing processes or threads of execution as a means of structuring a ...
Parallel computing is a type of computation in which many calculations or processes are carried out simultaneously. [1] Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism.
Atanasoff–Berry computer, the first computer with parallel processing [1] Instruction-level parallelism (ILP) is the parallel or simultaneous execution of a sequence of instructions in a computer program. More specifically, ILP refers to the average number of instructions run per step of this parallel execution. [2]: 5
"Embarrassingly" is used here to refer to parallelization problems which are "embarrassingly easy". [4] The term may imply embarrassment on the part of developers or compilers: "Because so many important problems remain unsolved mainly due to their intrinsic computational complexity, it would be embarrassing not to develop parallel implementations of polynomial homotopy continuation methods."
Task parallelism (also known as function parallelism and control parallelism) is a form of parallelization of computer code across multiple processors in parallel computing environments. Task parallelism focuses on distributing tasks—concurrently performed by processes or threads—across different processors.
Explicitly parallel instruction computing (EPIC) is a term coined in 1997 by the HP–Intel alliance [1] to describe a computing paradigm that researchers had been investigating since the early 1980s. [2] This paradigm is also called Independence architectures.
A skilled parallel programmer may take advantage of explicit parallelism to produce efficient code for a given target computation environment. However, programming with explicit parallelism is often difficult, especially for non-computing specialists, because of the extra work and skill involved in developing it.