Ads
related to: why is concrete curing necessary for construction
Search results
Results From The WOW.Com Content Network
Curing is intended to maintain moist conditions at the surface of concrete. It can be done by letting the formworks in place for a longer time, or by applying a hydrophobic thin film of an oily product (curing compound) at the concrete surface (e.g., for large slabs or rafts) to minimize water evaporation. Drying shrinkage
Accelerated curing is any method by which high early age strength is achieved in concrete. These techniques are especially useful in the prefabrication industry, wherein high early age strength enables the removal of the formwork within 24 hours, thereby reducing the cycle time, resulting in cost-saving benefits. [ 1 ]
The ultimate strength of concrete is influenced by the water-cementitious ratio (w/cm), the design constituents, and the mixing, placement and curing methods employed.All things being equal, concrete with a lower water-cement (cementitious) ratio makes a stronger concrete than that with a higher ratio. [2]
A single concrete block, as used for construction. Concrete is a composite material composed of aggregate bonded together with a fluid cement that cures to a solid over time. Concrete is the second-most-used substance in the world after water, [1] and is the most widely used building material. [2]
A cement accelerator is an admixture for the use in concrete, mortar, rendering or screeds. The addition of an accelerator speeds the setting time and thus cure time starts earlier. [1] This allows concrete to be placed in winter with reduced risk of frost damage. [2]
Concrete creep is essentially the sagging of concrete over time. Creep and shrinkage of concrete are two physical properties of concrete.The creep of concrete, which originates from the calcium silicate hydrates (C-S-H) in the hardened Portland cement paste (which is the binder of mineral aggregates), is fundamentally different from the creep of metals and polymers.
This kind of concrete is also known as self-repairing concrete. Because concrete has a poor tensile strength compared to other building materials, it often develops cracks in the surface. These cracks reduce the durability of the concrete because they facilitate the flow of liquids and gases that may contain harmful compounds.
Prestressed concrete is a highly versatile construction material as a result of it being an almost ideal combination of its two main constituents: high-strength steel, pre-stretched to allow its full strength to be easily realised; and modern concrete, pre-compressed to minimise cracking under tensile forces.