When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    A k-almost prime (for a natural number k) has Ω(n) = k (so it is composite if k > 1). An even number has the prime factor 2. The first: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 (sequence A005843 in the OEIS). An odd number does not have the prime factor 2.

  3. Prime omega function - Wikipedia

    en.wikipedia.org/wiki/Prime_omega_function

    In number theory, the prime omega functions and () count the number of prime factors of a natural number . Thereby (little omega) counts each distinct prime factor, whereas the related function () (big omega) counts the total number of prime factors of , honoring their multiplicity (see arithmetic function).

  4. Hardy–Ramanujan theorem - Wikipedia

    en.wikipedia.org/wiki/Hardy–Ramanujan_theorem

    In mathematics, the Hardy–Ramanujan theorem, proved by Ramanujan and checked by Hardy [1] states that the normal order of the number () of distinct prime factors of a number is ⁡ ⁡. Roughly speaking, this means that most numbers have about this number of distinct prime factors.

  5. Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_postulate

    According to Sylvester's generalization, one of these numbers has a prime factor greater than k. Since all these numbers are less than 2(k + 1), the number with a prime factor greater than k has only one prime factor, and thus is a prime. Note that 2n is not prime, and thus indeed we now know there exists a prime p with n < p < 2n.

  6. Splitting of prime ideals in Galois extensions - Wikipedia

    en.wikipedia.org/wiki/Splitting_of_prime_ideals...

    The relation above shows that [L : K]/ef equals the number g of prime factors of p in O L. ... This page was last edited on 16 December 2024, at 23:32 (UTC).

  7. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division : checking if the number is divisible by prime numbers 2 ...

  8. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    Then, f(r) = 0, which can be rearranged to express r k as a linear combination of powers of r less than k. This equation can be used to reduce away any powers of r with exponent e ≥ k . For example, if f ( x ) = x 2 + 1 and r is the imaginary unit i , then i 2 + 1 = 0 , or i 2 = −1 .

  9. Cyclotomic polynomial - Wikipedia

    en.wikipedia.org/wiki/Cyclotomic_polynomial

    k is a non-negative integer, always equal to 0 when b is even. (In fact, if n is neither 1 nor 2, then k is either 0 or 1. Besides, if n is not a power of 2, then k is always equal to 0) g is 1 or the largest odd prime factor of n. h is odd, coprime with n, and its prime factors are exactly the odd primes p such that n is the multiplicative ...