When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Massenergy_equivalence

    In physics, massenergy equivalence is the relationship between mass and energy in a system's rest frame, where the two quantities differ only by a multiplicative constant and the units of measurement. [1] [2] The principle is described by the physicist Albert Einstein's formula: =. [3]

  3. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of massenergy equivalence for bodies or systems with non-zero momentum.

  4. Conservation of energy - Wikipedia

    en.wikipedia.org/wiki/Conservation_of_energy

    This is an accepted version of this page This is the latest accepted revision, reviewed on 6 February 2025. Law of physics and chemistry This article is about the law of conservation of energy in physics. For sustainable energy resources, see Energy conservation. Part of a series on Continuum mechanics J = − D d φ d x {\displaystyle J=-D{\frac {d\varphi }{dx}}} Fick's laws of diffusion Laws ...

  5. Electronvolt - Wikipedia

    en.wikipedia.org/wiki/Electronvolt

    By massenergy equivalence, the electronvolt corresponds to a unit of mass. It is common in particle physics, where units of mass and energy are often interchanged, to express mass in units of eV/c 2, where c is the speed of light in vacuum (from E = mc 2).

  6. Equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Equivalence_principle

    The equivalence principle is the hypothesis that this numerical equality of inertial and gravitational mass is a consequence of their fundamental identity. [1]: 32 The equivalence principle can be considered an extension of the principle of relativity, the principle that the laws of physics are invariant under uniform motion

  7. Energy - Wikipedia

    en.wikipedia.org/wiki/Energy

    Energy gives rise to weight when it is trapped in a system with zero momentum, where it can be weighed. It is also equivalent to mass, and this mass is always associated with it. Mass is also equivalent to a certain amount of energy, and likewise always appears associated with it, as described in massenergy equivalence.

  8. Special relativity - Wikipedia

    en.wikipedia.org/wiki/Special_relativity

    Combined with other laws of physics, the two postulates of special relativity predict the equivalence of mass and energy, as expressed in the massenergy equivalence formula ⁠ = ⁠, where is the speed of light in vacuum. [6] [7] It also explains how the phenomena of electricity and magnetism are related.

  9. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    According to the concept of massenergy equivalence, invariant mass is equivalent to rest energy, while relativistic mass is equivalent to relativistic energy (also called total energy). The term "relativistic mass" tends not to be used in particle and nuclear physics and is often avoided by writers on special relativity, in favor of ...