Search results
Results From The WOW.Com Content Network
The method analyzes the spatial statistics of the geological model, called the training image, and generates realizations of the phenomena that honor those input multiple-point statistics. A recent MPS algorithm used to accomplish this task is the pattern-based method by Honarkhah. [ 66 ]
In addition to spatial data editing and visualization, ArcGIS provides spatial analysis and modeling features including overlay, surface, proximity, suitability, and network analysis, as well as interpolation analysis and other geostatistical modeling techniques. Python, Web API, .NET: Proprietary. Analytical extensions can be purchased separately.
Geostatistics is a branch of statistics focusing on spatial or spatiotemporal datasets.Developed originally to predict probability distributions of ore grades for mining operations, [1] it is currently applied in diverse disciplines including petroleum geology, hydrogeology, hydrology, meteorology, oceanography, geochemistry, geometallurgy, geography, forestry, environmental control, landscape ...
Spatial statistics is a field of applied statistics dealing with spatial data. It involves stochastic processes ( random fields , point processes ), sampling , smoothing and interpolation , regional ( areal unit ) and lattice ( gridded ) data, point patterns , as well as image analysis and stereology .
Chapter 6 concerns the types of data to be visualized, and the types of visualizations that can be made for them. Chapter 7 concerns spatial hierarchies and central place theory, while chapter 8 covers the analysis of spatial distributions in terms of their covariance. Finally, chapter 10 covers network and non-Euclidean data. [1] [3]
The fact that Moran's I is a summation of individual cross products is exploited by the "local indicators of spatial association" (LISA) to evaluate the clustering in those individual units by calculating Local Moran's I for each spatial unit and evaluating the statistical significance for each I i.
The need to use point processes to model these kinds of data lies in their inherent spatial structure. Accordingly, a first question of interest is often whether the given data exhibit complete spatial randomness (i.e. are a realization of a spatial Poisson process) as opposed to exhibiting either spatial aggregation or spatial inhibition.
The concept of a spatial weight is used in spatial analysis to describe neighbor relations between regions on a map. [1] If location i {\displaystyle i} is a neighbor of location j {\displaystyle j} then w i j ≠ 0 {\displaystyle w_{ij}\neq 0} otherwise w i j = 0 {\displaystyle w_{ij}=0} .