Search results
Results From The WOW.Com Content Network
In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4] The parameters used are:
Hypothesis testing can mean any mixture of two formulations that both changed with time. Any discussion of significance testing vs hypothesis testing is doubly vulnerable to confusion. Fisher thought that hypothesis testing was a useful strategy for performing industrial quality control, however, he strongly disagreed that hypothesis testing ...
The specificity of the test is equal to 1 minus the false positive rate. In statistical hypothesis testing, this fraction is given the Greek letter α, and 1 − α is defined as the specificity of the test. Increasing the specificity of the test lowers the probability of type I errors, but may raise the probability of type II errors (false ...
The permutation test is designed to determine whether the observed difference between the sample means is large enough to reject, at some significance level, the null hypothesis H that the data drawn from is from the same distribution as the data drawn from .
Statistical hypothesis test: Mann–Whitney U test: A statistical hypothesis test of the null hypothesis that, for randomly selected values X and Y from two populations, the probability of X being greater than Y is equal to the probability of Y being greater than X: Nonparametric statistics: Student's t-test
Statistical testing uses data from samples to assess, or make inferences about, a statistical population.For example, we may measure the yields of samples of two varieties of a crop, and use a two sample test to assess whether the mean values of this yield differs between varieties.
In a two-tailed test, the rejection region for a significance level of α = 0.05 is partitioned to both ends of the sampling distribution and makes up 5% of the area under the curve (white areas). Statistical significance plays a pivotal role in statistical hypothesis testing.