When.com Web Search

  1. Ad

    related to: hyperbolic space model definition chemistry science

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperbolic space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_space

    Hyperbolic space, developed independently by Nikolai Lobachevsky, János Bolyai and Carl Friedrich Gauss, is a geometric space analogous to Euclidean space, but such that Euclid's parallel postulate is no longer assumed to hold. Instead, the parallel postulate is replaced by the following alternative (in two dimensions):

  3. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Timelike lines (i.e., those with positive-norm tangents) through the origin pass through antipodal points in the hyperboloid, so the space of such lines yields a model of hyperbolic n-space. The stabilizer of any particular line is isomorphic to the product of the orthogonal groups O( n ) and O(1), where O( n ) acts on the tangent space of a ...

  4. Beltrami–Klein model - Wikipedia

    en.wikipedia.org/wiki/Beltrami–Klein_model

    Many hyperbolic lines through point P not intersecting line a in the Beltrami Klein model A hyperbolic triheptagonal tiling in a Beltrami–Klein model projection. In geometry, the Beltrami–Klein model, also called the projective model, Klein disk model, and the Cayley–Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit ...

  5. Non-Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Non-Euclidean_geometry

    The model for hyperbolic geometry was answered by Eugenio Beltrami, in 1868, who first showed that a surface called the pseudosphere has the appropriate curvature to model a portion of hyperbolic space and in a second paper in the same year, defined the Klein model, which models the entirety of hyperbolic space, and used this to show that ...

  6. Sphere packing - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing

    Despite this difficulty, K. Böröczky gives a universal upper bound for the density of sphere packings of hyperbolic n-space where n ≥ 2. [29] In three dimensions the Böröczky bound is approximately 85.327613%, and is realized by the horosphere packing of the order-6 tetrahedral honeycomb with Schläfli symbol {3,3,6}. [ 30 ]

  7. Hyperboloid model - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid_model

    In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of n-dimensional hyperbolic geometry in which points are represented by points on the forward sheet S + of a two-sheeted hyperboloid in (n+1)-dimensional Minkowski space or by the displacement vectors from the origin to those points, and m ...

  8. Horosphere - Wikipedia

    en.wikipedia.org/wiki/Horosphere

    A horosphere within the Poincaré disk model tangent to the edges of a hexagonal tiling cell of a hexagonal tiling honeycomb Apollonian sphere packing can be seen as showing horospheres that are tangent to an outer sphere of a Poincaré disk model. In hyperbolic geometry, a horosphere (or parasphere) is a specific hypersurface in hyperbolic n ...

  9. Poincaré half-plane model - Wikipedia

    en.wikipedia.org/wiki/Poincaré_half-plane_model

    The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...