Search results
Results From The WOW.Com Content Network
The method is termed active spline model. [5] The model is devised on the basis of active shape model, but uses centripetal Catmull-Rom spline to join two successive points (active shape model uses simple straight line), so that the total number of points necessary to depict a shape is less. The use of centripetal Catmull-Rom spline makes the ...
During the broad-phase, when the objects in the world move or deform, the data-structures used to cull collisions have to be updated. In cases where the changes between two frames or time-steps are small and the objects can be approximated well with axis-aligned bounding boxes , the sweep and prune algorithm [ 5 ] can be a suitable approach.
In computer-aided geometric design a control point is a member of a set of points used to determine the shape of a spline curve or, more generally, a surface or higher-dimensional object. [ 1 ]
2.5D (basic pronunciation two-and-a-half dimensional) perspective refers to gameplay or movement in a video game or virtual reality environment that is restricted to a two-dimensional (2D) plane with little to no access to a third dimension in a space that otherwise appears to be three-dimensional and is often simulated and rendered in a 3D digital environment.
The algorithm is based on a simple observation that if a point moves along a ray from infinity to the probe point and if it crosses the boundary of a polygon, possibly several times, then it alternately goes from the outside to inside, then from the inside to the outside, etc.
Any series of 4 distinct points can be converted to a cubic Bézier curve that goes through all 4 points in order. Given the starting and ending point of some cubic Bézier curve, and the points along the curve corresponding to t = 1/3 and t = 2/3, the control points for the original Bézier curve can be recovered. [9]
A slerp path is, in fact, the spherical geometry equivalent of a path along a line segment in the plane; a great circle is a spherical geodesic. Oblique vector rectifies to slerp factor. More familiar than the general slerp formula is the case when the end vectors are perpendicular, in which case the formula is p 0 cos θ + p 1 sin θ.
In linear motion, the directions of all the vectors describing the system are equal and constant which means the objects move along the same axis and do not change direction. The analysis of such systems may therefore be simplified by neglecting the direction components of the vectors involved and dealing only with the magnitude. [2]